Analisi Matematica 1, ing. Ambiente & Territorio, Energetica, Meccanica, Secondo esonero 02-12-05
Compito n.1 di Analisi Matematica 1, ing. Ambiente& Territorio, Energetica Meccanica, 02-12-05
Quesito n. 1 Si calcoli il seguente limite $\lim_{x\to 0} \frac{x^2 \cos^2 x - e^{x^2} + 1}{x^2 \sin^2 x}$
$\overline{A}_{+\infty}$ $\overline{B}_{\frac{1}{2}}$ $\overline{C}_{-\frac{3}{2}}$ \overline{D}_{0} $\overline{E}_{-\frac{1}{2}}$ $\overline{F}_{\frac{-1}{4}}$
Quesito n. 2 Sia $f(x) = \arctan \frac{x+1}{2x-1}$. Allora $f'(x)$ è uguale a:
Quesito n. 3 Sia $f(x) = \ln^2(1+x) - x^2 + \alpha x^3 + \beta x^4$. Essa ha ordine di infinitesimo massimo per $x \to 0$ se e solo se
$\boxed{\textbf{A} \ \alpha = 1, \ \beta = \frac{1}{2} \boxed{\textbf{B} \ \alpha = 1, \ \beta = -2} \boxed{\textbf{C} \ \alpha = 1, \ \beta = -\frac{11}{12} \boxed{\textbf{D} \ \alpha = \frac{1}{2}, \ \beta = -1} \boxed{\textbf{E} \ \alpha = \frac{7}{8}, \ \beta = 1} \boxed{\textbf{F} \ \alpha = -\frac{11}{12}, \ \beta = 1}$
Quesito n. 4 (1) sia $f:[a,b] \to \mathbf{R}$ una funzione derivabile tale che $x_o \in [a,b]$ è un punto di minimo. Allora esiste un intorno di x_o tale che $f'(x_o)(x-x_o) \ge 0$ per ogni x appartenente all'intorno (2) sia $f:[a,b] \to \mathbf{R}$ una funzione derivabile tale che $x_o \in (a,b)$ è un punto di massimo. Allora $\exists \ \delta > 0 : x \in (x_o - \delta, x_o + \delta) \Rightarrow f'(x_o)(x-x_o) < 0$ (3) sia $f:[a,b] \to \mathbf{R}$ una funzione derivabile tale che $x_o \in (a,b)$ è un punto di minimo e $f'(x_o) = 0$. Allora $f''(x_o) > 0$ (si assume che in x_o la funzione ha un minimo se esiste un intorno $(x_o - \delta, x_o + \delta)$ tale che $f(x) \ge f(x_o)$ per $x \in (x_o - \delta, x_o + \delta)$ e viceversa per il massimo)) (In tutti e tre i casi con f si intende una qualsiasi funzione avente le caratteristiche date). Allora
A (1) è falsa, (2) è vera e (3) è vera (2) è vera e (3) è falsa (2) è vera, (2) è falsa (3) è falsa (3) è falsa (1) è vera, (2) è falsa e (3) è vera (2) è falsa (2) è vera e (3) è falsa (3) è vera (4) è vera, (4) è vera, (5) è vera (6) è vera (6) è vera (6) è vera (7) è vera (8) è vera (8) è vera (9) è vera
Quesito n. 5 Il limite $\lim_{x\to 0} \frac{xe^x - \ln(1+x)}{\sin^2 x + (1-\cos x)}$ è uguale a:
A 1 B $+\infty$ C $-\frac{1}{3}$ D non esiste E 0 F $\frac{1}{2}$
Quesito n. 6 Data una funzione $f:[a,b)\to \mathbf{R}$ si consideri: (1) se f è continua è allora esiste $x_0\in[a,b)$ tale che $f(x_0)=\frac{1}{2}(f(a)+f(b))$ (2) se f è invertibile è monotona (3) se f è derivabile è invertibile. Si dica quale delle seguenti affermazioni è vera
A (1) è falsa, (2) è falsa e (3) è falsa B (1) è falsa, (2) è vera e (3) è vera C (1) è vera, (2) è vera e (3) è falsa D (1) è vera, (2) è vera e (3) è vera E (1) è vera, (2) è falsa e (3) è falsa e (3) è falsa
Quesito n. 7 La funzione $f(x) = \begin{cases} -x^2 e^{-x^2} & x \le 0 \\ \left \frac{1}{x} + 8x - 6 \right & x > 0 \end{cases}$ ha
A non più di tre punti di estremo, nessun asintoto verticale, un asintoto orizzontale, nessun asintoto obliquo B non più di quattro punti di estremo, un asintoto verticale, un asintoto orizzontale ed uno obliquo non più di quattro punti di estremo, un asintoto verticale, un asintoto orizzontale ed uno obliquo almeno cinque punti di estremo, un asintoto verticale, un asintoto orizzontale ed uno obliquo ed uno obliquo ed uno obliquo e essun asintoto orizzontale ed uno obliquo f non più di quattro punti di estremo, un asintoto orizzontale ed uno obliquo f non più di cinque punti di estremo, un asintoto verticale, un asintoto orizzontale ed uno obliquo
Quesito n. 8 La funzione $\sqrt{ \sin x(1-\sin x) }$ ha
$ \underline{\mathbf{A}} $ in 0 una cuspide e in $\frac{\pi}{2}$ una cuspide $\underline{\mathbf{B}}$ in 0 un punto angoloso e in $\frac{\pi}{2}$ un punto angoloso $\underline{\mathbf{C}}$ in 0 un punto angoloso e in $\frac{\pi}{2}$
un punto in cui è derivabile \overline{D} in $\frac{\pi}{2}$ un punto in cui la funzione è derivabile \overline{E} in 0 una cuspide e in $\frac{\pi}{2}$ un punto angoloso \overline{F} in 0 un punto in cui la funzione è derivabile e in $\frac{\pi}{2}$ una cuspide
Quesito n. 9 Data una funzione $f:[0,1)\cup[2,3]\to\mathbf{R}$ sia $g(x):[2,3]\to\mathbf{R}$ la f ristretta all'intervallo $[2,3]$ $(g(x)=f _{[2,3]})$. Si consideri: (1) se f è continua allora esiste (finito o infinito) $\lim_{x\to 1^-} f(x)$ (2) se f è continua ed invertibile allora $g(x)$ è monotona (3) se
f è strettamente monotona è invertibile . Si dica quale delle seguenti affermazioni è vera
A (1) è vera, (2) è falsa e (3) è vera (2) è falsa e (3) è falsa (2) è vera, (2) è vera e (3) è falsa (1) è vera, (2) è vera e (3) è falsa
falsa, (2) è vera e (3) è vera (1) è falsa, (2) è falsa e (3) è vera (1) è falsa, (2) è falsa e (3) è falsa
Quesito n. 10 Sia data una funzione $f:[0,3] \to \mathbf{R}$ continua e strettamente crescente. Sia data inoltre la funzione $g:(1,2) \to \mathbf{R}$ tale che $g(x) = f(x)$ per ogni $x \in (1,2)$. Sia $G = \{y = g(x): x \in (1,2)\}$ l'insieme dei valori assunti da $g(x)$. Si dica quale delle seguenti affermazioni è vera
A G può essere illimitato B G ammette minimo C G ammette estremo superiore ma non inferiore D G ammette estremo
superiore e inferiore E G ammette estremo inferiore ma non superiore E G ammette massimo
Quesito n. 11 Date le funzioni f, g e h definite da $f(x) = 2^{(x^x)}, g(x) = x^{(2^x)}$ e $h(x) = (2^x)^x$. Allora per $x \to +\infty$ si ha: $ \boxed{ A \ h(x) = o(f(x)) \ \underline{e} \ f(x) = o(g(x)) \ \underline{B} \ f(x) = o(g(x)) \ \underline{e} \ g(x) = o(h(x)) \ \underline{C} \ g(x) = o(h(x)) \ \underline{C} \ g(x) = o(h(x)) \ \underline{D} \ h(x) = o(g(x)) } $
$\underbrace{e\ g(x) = o(f(x))}_{\text{e}\ g(x)} \underbrace{e\ f(x) = o(g(x))}_{\text{f}\ g(x)} \underbrace{e\ g(x) = o(h(x))}_{\text{f}\ g(x)} e\$
Quesito n. 12 Sia data la funzione $f(x) = \left(x^{x^2}\right)^x$. Allora $\frac{f'(x)}{x^2 f(x)}$ è uguale a:
$egin{array}{ c c c c c c c c c c c c c c c c c c c$
Quesito n. 13 Sia $f(x) = \ln(7 + 8\sin x + 9\cos x)$. Allora $f'(0)$ è eguale a

Quesito n. 14 Il valore minimo di a per cui la funzione $f(x)=(2)^{-2x}-(\frac{1}{2})^x+x\ln 2$ è crescente se e solo se $x\in(a,+\infty)$ è
$oxed{A} a = -1 oxed{B} a = -2 oxed{C} a = 2 oxed{D} a = 3 oxed{E} a = 1 oxed{F} a = 0$
Quesito n. 15 Si considerino le seguenti tre affermazioni e si dica quale delle A-G è vera. (1) È data una funzione $f: \mathbf{R} \to \mathbf{R}$ derivabile monotona strettamente crescente tale che $\lim_{x\to+\infty} f(x) = +\infty$. Può aversi $\lim_{x\to+\infty} f'(x) = 0$. (2) È data una funzione $f: \mathbf{R} \to \mathbf{R}$ derivabile monotona strettamente crescente tale che $\lim_{x\to+\infty} f(x) = +\infty$. Può aversi $f'(x) = 0$ su di un insieme illimitato (3) È data una funzione $h: [a, b] \to \mathbf{R}$ derivabile per cui la derivata prima è una funzione strettamente crescente. Allora h ha la concavità rivolta verso l'alto A (1) è vera, (2) è vera e (3) è falsa A (1) è falsa, (2) è vera e (3) è falsa A (2) è vera e (3) è vera A (2) è vera e (3) è vera A (3) è vera A (4) è vera, (2) è vera e (3) è vera
Quesito n. 16 Si ordinino secondo l'infinito crescente per $x \to +\infty$ le seguenti funzioni $f_1(x) = e^{x^{3/2}/\ln^2 x}$, $f_2(x) = e^{x \ln(\ln x)}$, $f_3(x) = e^{\sqrt{x} \ln^4 x}$, (l'ordinamento va eseguito nel modo seguente: $g < f$ se $\lim_{x \to +\infty} \frac{f}{g} = +\infty$) A $f_3 < f_2 < f_1$ B $f_3 < f_1 < f_2$ C $f_1 < f_3 < f_2$ D $f_2 < f_3 < f_1$ E $f_2 < f_1 < f_3$ F $f_1 < f_2 < f_3$
Compito n.1 Cognome: Nome: Nom
Totale:

Compito n.2 di Analisi Matematica 1, ing. Ambiente & Territorio, Energetica Meccanica, 02-12-05 Quesito n. 1 Sia $f(x) = \ln(3 + 8\sin x + 7\cos x)$. Allora f'(0) è eguale a $\frac{\boxed{\textbf{A}} \ \frac{4}{3} \quad \boxed{\textbf{B}} \ 1 \quad \boxed{\textbf{C}} \ \frac{4}{7} \quad \boxed{\textbf{D}} \ \frac{4}{5} \quad \boxed{\textbf{E}} \ \frac{4}{9} \quad \boxed{\textbf{F}} \ \frac{3}{2}}{\textcolor{blue}{\textbf{Quesito n. 2}} \ 1 \ \text{limite} \lim_{x \to 0} \frac{\ln(1+2x)\left(1-\sin x\right)-2x}{\sin^2 x + \sin x^2} \ \text{è uguale a:}$ $A + \infty$ B - 2 $C = \frac{2}{3}$ D_1 $E_{\text{non esiste}}$ E_2 Quesito n. 3 Sia $f(x) = \arctan \frac{x-2}{x+1}$. Allora f'(x) è uguale a: Al in 1 la funzione è derivabile e in 0 una cuspide la in 1 un punto angoloso e in 0 la funzione è derivabile la in 1 una cuspide e in 0 una cuspide D in 1 una cuspide e in 0 la funzione è derivabile E in 1 un punto angoloso e in 0 un punto angoloso in 1 una cuspide e in 0 un punto angoloso **Quesito n. 5** Data una funzione $f: [0,1] \cup [2,3] \to \mathbf{R}$ si consideri: (1) se f è continua è limitata (2) se f è continua ed invertibile (3) se f è continua e invertibile è monotona. Si dica quale delle seguenti affermazioni è vera A (1) è vera, (2) è vera e (3) è falsa (1) è falsa, (2) è vera e (3) è vera (1) è vera, (2) è falsa e (3) è vera (1) è falsa, (2) è falsa e (3) è vera \(\begin{aligned} \overline{\mathbb{E}} & (1) \overline{\mathbb{e}} & falsa, (2) \overline{\mathbb{e}} & vera e (3) \overline{\mathbb{e}} & falsa \\ \end{aligned} \) \(\begin{aligned} \overline{\mathbb{E}} & (1) \overline{\mathbb{e}} & vera e (3) \overline{\math Quesito n. 6 Si considerino le seguenti tre affermazioni e si dica quale delle A-G è vera. (1) È data una funzione $f:[a,b] \to \mathbf{R}$ continua in [a,b] e derivabile in (a,b) tale che $\lim_{x\to a^+} f'(x) = +\infty$. Allora $f'(a^+)$ non esiste in \mathbf{R} . (2) È data una funzione $f:[a,b]\to \mathbf{R}$ continua in [a,b] e derivabile in (a,b) tale che $\lim_{x\to a^+} f'(x)$ non esiste. Allora $f'(a^+)$ non esiste in \mathbf{R} . (3) È data una funzione $h: \mathbf{R} \to \mathbf{R}$ derivabile tale che h'(x) è illimitata inferiormente. Allora si ha $\lim_{x\to +\infty} h(x) = -\infty$ A (1) è falsa, (2) è falsa e (3) è vera (1) è vera, (2) è falsa e (3) è falsa (2) è vera e (3) è vera (1) è falsa, (2) è vera e (3) è vera Quesito n. 7 Il valore minimo di a per cui la funzione $f(x)=(2)^{-2x+2}-2(\frac{1}{2})^x+x\ln 2$ è crescente se e solo se $x\in(a,+\infty)$ è Quesito n. 9 Data una funzione $f:[a,b]\to \mathbf{R}$ si consideri: (1) se f è continua allora esiste $x_0\in[a,b]$ tale che $f(x_0)=\frac{1}{2}(f(a)+f(b))$ (2) se f è invertibile è monotona (3) se f è derivabile è monotona. Si dica quale delle seguenti affermazioni è vera A (1) è falsa, (2) è vera e (3) è vera (2) è vera e (3) è vera (2) è vera e (3) è vera (2) è vera e (3) è falsa (1) è vera, (2) è falsa e (3) è vera (1) è vera, (2) è falsa e (3) è falsa (2) è falsa e (3) è vera Quesito n. 10 Sia $f(x) = \cos x - e^{-\frac{x^2}{2}} + \alpha x^4 + \beta - \cos x^3$. Essa ha ordine di infinitesimo massimo per $x \to 0$ se e solo se Al esattamente quattro punti di estremo, un asintoto verticale, un asintoto orizzontale ed uno obliquo B almeno sei punti di estremo, un asintoto verticale, un asintoto orizzontale e nessun asintoto obliquo verticale, un asintoto orizzontale ed uno obliquo D non più di cinque punti di estremo, nessun asintoto verticale, un asintoto orizzontale,nessun asintoto obliquo E non più di quattro punti di estremo, un asintoto verticale, un asintoto orizzontale e nessun asintoto obliquo 🗜 non più di tre punti di estremo, un asintoto verticale, nessun asintoto orizzontale ed un asintoto obliquo **Quesito n. 12** Si calcoli il seguente limite $\lim_{x \to +\infty} \frac{e^{x^2} \sin x - x}{\tan x - \sin x}$ $A = \frac{5}{3}$ B_0 $C_{-\infty}$ $D = \frac{2}{3}e$ $E = \frac{-1}{2}$ $F = \frac{1}{4}$ Quesito n. 13 (1) sia $f: [a,b] \to \mathbf{R}$ una funzione derivabile tale che $x_o \in [a,b]$ è un punto di massimo. Allora esiste un intorno di x_o tale che $f'(x_o)(x-x_o) \le 0$ per ogni x appartenente all'intorno (2) sia $f: [a,b] \to \mathbf{R}$ una funzione derivabile tale che $x_o \in (a,b)$ è un punto di massimo. Allora $\exists \delta > 0: x \in (x_o - \delta, x_o + \delta) \Rightarrow f'(x_o)(x-x_o) < 0$ (3) sia $f: [0,1] \to \mathbf{R}$ una funzione derivabile. Allora f(x) - f(0) - f'(0)x = o(x) per $x \to 0^+$ (si assume che in x_o la funzione ha un minimo se esiste un intorno $(x_o - \delta, x_o + \delta)$ $tale\ che\ f(x) \ge f(x_o)\ per\ x \in (x_o-\delta,x_o+\delta)\ e\ viceversa\ per\ il\ massimo))$ (In tutti e tre i casi con f si intende una qualsiasi funzione avente le caratteristiche date). Allora A (1) è falsa, (2) è vera e (3) è vera (3) è vera (1) è falsa, (2) è falsa (2) è falsa (2) è falsa (2) è falsa (2) è vera (3) è falsa (4) è falsa (5) è falsa (6) è falsa (7) è falsa (8) è falsa (8)

Quesito n. 14 Si ordinino secondo l'infinito crescente per $x \to +\infty$ le seguenti funzioni $f_1(x) = x^x$, $f_2(x) = e^{x\sqrt{\ln x}}$, $f_3(x) = x^{\sqrt{x} + 2x}$ (l'ordinamento va eseguito nel modo seguente: $g < f$ se $\lim_{x \to +\infty} \frac{f}{g} = +\infty$)
Quesito n. 15 Sia data la funzione $f(x) = \left(x^{x^3}\right)^x$. Allora $\frac{f'(x)}{x^3f(x)}$ è uguale a:
Quesito n. 16 Sia data una funzione $f:[0,3] \to \mathbf{R}$ continua e strettamente crescente. Sia data inoltre la funzione $g:(1,2] \to \mathbf{R}$ tale che $g(x) = f(x)$ per ogni $x \in (1,2]$. Sia $G = \{y = g(x) : x \in (1,2]\}$ l'insieme dei valori assunti da $g(x)$. Si dica quale delle seguenti affermazioni è vera A G ammette massimo ma non minimo G ammette estremo inferiore ma non superiore G ammette massimo e minimo G ammette minimo G ammette minimo G and G ammette estremo superiore G ammette minimo G ammetre G
Compito n.2 Cognome: Nome:
n.1 n.2 n.3 n.4 n.5 n.6 n.7 n.8 n.9 n.10 n.11 n.12 n.13 n.14 n.15 n.16 A<
non scrivere sotto questa linea Totale:

Compito n.3 di Analisi Matematica 1, ing. Ambiente& Territorio, Energetica Meccanica, 02-12-05 Quesito n. 1 (1) sia $f:[0,1] \to \mathbf{R}$ una funzione derivabile tale che f'(1/2) = 0. Allora $\frac{f(x) - f(\frac{1}{2})}{\sqrt{x - \frac{1}{2}}} = o(1)$ per $x \to \frac{1}{2}^+$ (2) sia $f:[0,1] \to \mathbf{R}$ una funzione derivabile tale che x = 0 è un minimo. Allora $f'(0^+) = 0$ (la derivata destra in x = 0 vale zero). (3) sia $f:[0,1] \to \mathbf{R}$ una funzione derivabile tale che f'(x) > 0 per ogni x. Ne segue che f(x) è invertibile (In tutti e tre i casi con f si intende una qualsiasi funzione avente le caratteristiche date). Allora A (1) è vera, (2) è vera e (3) è falsa B (1) è vera, (2) è vera e (3) è vera C (1) è falsa, (2) è vera e (3) è falsa D (1) è Quesito n. 2 Sia $f(x) = \arctan \frac{2x+1}{x+1}$. Allora f'(x) è uguale a: $A_{\frac{2}{3}}$ $B_{\frac{-1}{2}}$ $C_{\frac{13}{24}}$ $D_{\frac{1}{2}}$ $E_{\frac{7}{5}}$ $F_{\frac{2}{7}}$ Quesito n. 4 Date le funzioni f, g e h definite da $f(x) = \ln(1+x^x)$, $g(x) = \ln(1+x^2)$ e $h(x) = \sqrt{\ln(1+e^{x^3})}$. Allora per $x \to +\infty$ si ha: e h(x) = o(f(x)) $\stackrel{\textstyle oxed{E}}{=} h(x) = o(f(x))$ e f(x) = o(g(x)) $\stackrel{\textstyle oxed{F}}{=} f(x) = o(h(x))$ e h(x) = o(g(x))Quesito n. 5 Sia data una funzione $f: [0,3] \to \mathbf{R}$ continua e strettamente crescente. Sia data inoltre la funzione $g: [1,2) \to \mathbf{R}$ tale che g(x) = f(x) per ogni $x \in [1,2)$. Sia $G = \{y = g(x) : x \in [1,2)\}$ l'insieme dei valori assunti da g(x). Si dica quale delle seguenti affermazioni è vera A G non ammette estremo superiore nè inferiore B G ammette massimo C G non ammette minimo D G ammette minimo ma non massimo $\stackrel{\cdot}{\mathbb{E}} G$ può essere illimitato $\stackrel{\cdot}{\mathbb{F}} G$ ammette estremo inferiore ma non superiore Quesito n. 6 Sia $f(x) = \ln(3 + 5\sin x + 4\cos x)$. Allora f'(0) è eguale a Quesito n. 7 Sia data la funzione $f(x) = ((2x)^x)^x$. Allora $\frac{f'(x)}{xf(x)}$ è uguale a: Quesito n. 8 Il valore minimo di a per cui la funzione $f(x) = (2)^{-2x} + (\frac{1}{2})^x + x \ln 2$ è crescente se e solo se $x \in (a, +\infty)$ è $oxed{A} a = -1$ $oxed{B} a = 1$ $oxed{C} a = 2$ $oxed{D} a = 3$ $oxed{E} a = -2$ $oxed{F} a = 0$ Quesito n. 9 Si ordinino secondo l'infinitesimo crescente per $x \to 0^+$ le seguenti funzioni $f_1(x) = xe^{-1/x}$, $f_2(x) = e^{-1/x^2}$, $f_3(x) = x^{1/x}$, (l'ordinamento va eseguito nel modo seguente: g < f se $\lim_{x \to 0^+} \frac{f}{g} = 0$ ossia f = o(g)) $|A| = \frac{\pi}{2}$ una cuspide e 0 un punto angoloso $B = \frac{\pi}{2}$ un punto angoloso in 0 e la funzione è derivabile C in $\frac{\pi}{2}$ la funzione è derivabile e 0 è un punto di cuspide $\frac{|D|}{2}$ un punto di cuspide e 0 un punto di cuspide $\frac{|E|}{2}$ in $\frac{-\pi}{2}$ la funzione è derivabile e 0 è un punto angoloso $\frac{|F|}{2}$ un punto angoloso e 0 un punto angoloso Quesito n. 11 Sia $f(x) = \ln(1+x) - \sin x + \alpha x^2 + \beta x^3$. Essa ha ordine di infinitesimo massimo per $x \to 0$ se e solo se $\boxed{\textbf{A} \ \alpha = \frac{1}{2}, \ \beta = -1 \quad \boxed{\textbf{B} \ \alpha = \frac{1}{2}, \ \beta = 1 \quad \boxed{\textbf{C} \ \alpha = -\frac{1}{2}, \ \beta = \frac{1}{2} \quad \boxed{\textbf{D} \ \alpha = \frac{1}{2}, \ \beta = -\frac{1}{2} \quad \boxed{\textbf{E} \ \alpha = 1, \ \beta = \frac{1}{2} \quad \boxed{\textbf{F} \ \alpha = \frac{1}{2}, \ \beta = \frac{1}{2}} }$ **Quesito n. 12** Si considerino le seguenti tre affermazioni e si dica quale delle A-G è vera. (1) È data una funzione $f:[0,3] \to \mathbf{R}$, derivabile con derivata continua nel suo dominio, che vale zero per $1 \le x \le 2$. Allora f(x) è costante su [0,3]. funzione $q: \mathbf{R} \to \mathbf{R}$ derivabile due volte, se la funzione è strettamente convessa in \mathbf{R} allora $q''(x) \geq 0$ per ogni xfunzione $h:[a,b)\to \mathbf{R}$ tale che $\lim_{x\to b^-}h'(x)=+\infty$. Allora $\lim_{x\to b^-}h(x)=+\infty$. A (1) è vera, (2) è vera e (3) è falsa (1) è falsa, (2) è vera e (3) è falsa (2) è falsa (2) è falsa (2) è falsa (3) è vera (1) è vera, (2) è falsa e (3) è vera E (1) è falsa, (2) è vera e (3) è vera E (1) è vera, (2) è vera e (3) è vera Quesito n. 13 Data una funzione $f:[a,b) \to \mathbf{R}$ si consideri: (1) se f è continua è limitata (2) se f è continua è monotona (3) se f è derivabile è monotona. Si dica quale delle seguenti affermazioni è vera A (1) è vera, (2) è vera e (3) è vera B (1) è falsa, (2) è vera e (3) è vera C (1) è vera, (2) è vera e (3) è falsa D nessuna delle altre risposte è esatta (1) è vera, (2) è falsa e (3) è vera (1) è falsa, (2) è vera e (3) è falsa Quesito n. 14 Data una funzione $f:[0,1] \cup [2,3] \to \mathbf{R}$ si consideri: (1) se f è continua allora esiste x_0 appartenente al dominio della funzione per cui $f(x_0) = \frac{1}{2}(f(3) + f(0))$ (2) se $f'(x) \ge 0$ allorà la funzione è crescente monotona. Si dica quale delle seguenti affermazioni è vera (3) se f è invertibile e continua è A (1) è falsa, (2) è falsa e (3) è vera (2) è falsa e (3) è falsa e (3) è falsa (2) è vera, (2) è vera e (3) è vera (3) è vera falsa, (2) è vera e (3) è falsa (1) è falsa, (2) è vera e (3) è vera (1) è falsa, (2) è falsa e (3) è falsa

Quesito n. 15 Il limite $\lim_{x\to 0} \frac{e^x \ln(1+x) - xe^{\frac{1}{2}x}}{3x^4 + (1-\cos x)}$ è uguale a:
$A_1 B_{-1} C_{+\infty} D_{\text{non esiste}} E_{-2} F_0$
Quesito n. 16 La funzione $f(x) = \begin{cases} \cos x & -\pi \le x \le 0 \\ -x^2 + x^3 & 0 < x \le 2 \end{cases}$ ha
A esattamente due punti di estremo B esattamente cinque punti di estremo C esattamente un punto di estremo mente sei punti di estremo E esattamente tre punti di estremo F esattamente quattro punti di estremo
Compito n.3 Cognome:
n.1 n.2 n.3 n.4 n.5 n.6 n.7 n.8 n.9 n.10 n.11 n.12 n.13 n.14 n.15 n.16 A<
non scrivere sotto questa linea Totale:

Compito n.4 di Analisi Matematica 1, ing. Ambiente& Territorio, Energetica Meccanica, 02-12-05
Quesito n. 1 Sia $f(x) = \ln(2 + 14\sin x + 4\cos x)$. Allora $f'(0)$ è eguale a
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Quesito n. 2 Sia data una funzione $f:[0,3] \to \mathbf{R}$ continua e strettamente decrescente. Sia data inoltre la funzione $g:[1,2] \to \mathbf{R}$ tale che $g(x) = f(x)$ per ogni $x \in [1,2]$. Sia $G = \{y = g(x) : x \in [1,2]\}$ l'insieme dei valori assunti da $g(x)$. Si dica quale delle seguent affermazioni è vera
$oxed{\mathbb{A}}$ G ammette estremo superiore ma non inferiore $oxed{\mathbb{B}}$ G non ammette massimo $oxed{\mathbb{C}}$ G può essere illimitato $oxed{\mathbb{D}}$ G non ammette minimo $oxed{\mathbb{E}}$ G ammette estremo inferiore ma non superiore $oxed{\mathbb{F}}$ G è limitato
Quesito n. 3 Sia $f(x) = \arctan \frac{x+1}{x-2}$. Allora $f'(x)$ è uguale a:
Quesito n. 4 Sia $f(x) = \frac{1}{2} \ln(1+x^2) + \cos x + \beta + \alpha x^4$. Essa ha ordine di infinitesimo massimo per $x \to 0$ se e solo se
$\boxed{ \boxed{ \boxed{ \boxed{A}} \ \alpha = -\frac{7}{24}, \ \beta = -1 } \boxed{ \boxed{B} \ \alpha = \frac{1}{3}, \ \beta = 1 } \boxed{ \boxed{C} \ \alpha = -\frac{1}{4}, \ \beta = -1 } \boxed{ \boxed{D} \ \alpha = -\frac{1}{3}, \ \beta = 1 } \boxed{ \boxed{E} \ \alpha = \frac{1}{3}, \ \beta = 1 } \boxed{ \boxed{F} \ \alpha = \frac{5}{24}, \ \beta = -1 } $
Quesito n. 5 Data una funzione $f:[a,b] \to \mathbf{R}$ si consideri: (1) se f è monotona è limitata (2) se f è monotona è invertibile (3) se f è derivabile e invertibile allora $f' \neq 0$ per ogni x . Si dica quale delle seguenti affermazioni è vera
A (1) è vera, (2) è vera e (3) è vera B (1) è falsa, (2) è vera e (3) è falsa C (1) è vera, (2) è vera e (3) è falsa D (1) è falsa, (2) è vera e (3) è vera E (1) è vera, (2) è falsa e (3) è vera E (1) è vera, (2) è falsa e (3) è falsa
Quesito n. 6 (1) Data una funzione $f: [a, b] \to \mathbb{R}$ derivabile in (a, b) sia $f'(x_0) = 0$, $x_0 \in (a, b)$. Allora x_0 è un punto di massimo
oppure di minimo oppure di flesso a tangente orizzontale (2) sia $f:[0,1] \cup [2,3] \to \mathbf{R}$ una funzione derivabile tale che $f'(x) > 0$ per ogni x . Allora $f(x)$ è crescente sul suo dominio (3) sia $f:[0,1] \to \mathbf{R}$ una funzione derivabile. Allora $\frac{f(x)-f(0)}{x^{1/2}} = o(1)$ per $x \to 0^+$ (In tutti e tre i casi con f si intende una qualsiasi funzione avente le caratteristiche date). Allora
A (1) è falsa, (2) è vera e (3) è vera B (1) è vera, (2) è vera e (3) è vera C (1) è falsa, (2) è vera e (3) è falsa D (1) è vera, (2) è falsa e (3) è vera E (1) è vera, (2) è vera e (3) è falsa B (1) è falsa, (2) è falsa e (3) è vera
Quesito n. 7 La funzione $\sqrt{ \cos x(1+\cos x) }$ ha
A in π un punto in cui la funzione è derivabile B in π una cuspide C in $\frac{\pi}{2}$ una cuspide e in π una cuspide cuspide e in π un punto angoloso E in $\frac{\pi}{2}$ un punto angoloso E in $\frac{\pi}{2}$ un punto angoloso e in π un punto angoloso
Quesito n. 8 Si calcoli il seguente limite $\lim_{x \to +\infty} \frac{\sin^2 x - x \sin x}{(1 - \cos x)^2}$
$\boxed{ A}_{+\infty} \boxed{ B}_{-1} \boxed{ C}_{-\frac{3}{2}} \boxed{ D}_{0} \boxed{ E}_{-\frac{1}{3}} \boxed{ F}_{-\frac{2}{3}}$
Quesito n. 9 Si considerino le seguenti tre affermazioni e si dica quale delle A-G è vera. (1) È data una funzione $f:[a,b)\to \mathbf{R}$ derivabile tale che $\lim_{x\to b^-} f(x)=+\infty$. Allora $\lim_{x\to b^-} f'(x)=+\infty$. (2) È data una funzione $g:\mathbf{R}\to\mathbf{R}$ tale che $\lim_{x\to +\infty} g(x)=0$. Allora non è detto che sia definitivamente positiva oppure negativa illimitata. Allora $f(x)$ è illimitata.
A (1) è falsa, (2) è vera e (3) è vera (2) è vera, (2) è falsa e (3) è vera (1) è falsa, (2) è falsa e (3) è vera (2) è vera e (3) è falsa (2) è vera e (3) è falsa (2) è vera e (3) è falsa (3) è vera (3) è falsa
Quesito n. 10 Sia data la funzione $f(x) = ((3x)^x)^x$. Allora $\frac{f'(x)}{xf(x)}$ è uguale a:
A non più di cinque punti di estremo, nessun asintoto verticale, un asintoto orizzontale e un asintoto obliquo
punti di estremo, nessun asintoto verticale, un asintoto orizzontale, nessun asintoto obliquo
nessun asintoto verticale, nessun asintoto orizzontale, un asintoto obliquo E esattamente quattro punti di estremo, nessun asintoto verticale, nessun asintoto orizzontale ed uno obliquo E esattamente quattro punti di estremo, nessun asintoto verticale, un asintoto
orizzontale, nessun asintoto obliquo
asintoto obliquo
Quesito n. 12 Data una funzione $f:[0,1] \cup [2,3] \to \mathbf{R}$ sia $g(x):[0,1] \to \mathbf{R}$ la f ristretta all'intervallo $[0,1]$ $(g(x)=f _{[0,1]})$. S consideri: (1) se f è continua è limitata (2) se f è continua ed invertibile allora $g(x)$ è monotona (3) se f è invertibile è monotona. Si dica quale delle seguenti affermazioni è vera
A (1) è vera, (2) è vera e (3) è vera B (1) è falsa, (2) è vera e (3) è falsa C (1) è falsa, (2) è falsa e (3) è vera D (1) è
vera, (2) è falsa e (3) è vera
Quesito n. 13 Il valore minimo di a per cui la funzione $f(x)=(2)^{-2x}-(\frac{1}{2})^x+x\ln 2$ è crescente se e solo se $x\in(a,+\infty)$ è
$oxed{A} a=2 oxed{B} a=1 oxed{C} a=-1 oxed{D} a=3 oxed{E} a=0 oxed{F} a=-2$

Quesito n. 14 Il limite $\lim_{x\to 0} \frac{\ln(1+2x)(1-\sin 2x)-2x}{x^2+\sin x^2}$ è uguale a:
$oxed{A} \ 0 oxed{B} \ -3 oxed{C} \ 2 oxed{D} \ ext{non esiste} oxed{E} \ +\infty oxed{F} \ 4$
Quesito n. 15 Si ordinino secondo l'infinitesimo crescente per $x \to 0^+$ le seguenti funzioni $f_1(x) = \frac{e^{\sin x^3} - 1}{\cos x - 1}$, $f_2(x) = (1 + x)^{\frac{-1}{x^2}}$,
$f_3(x) = \frac{1}{\ln x} (1 + x^2)^{\frac{1}{z}}$, (l'ordinamento va eseguito nel modo seguente: $g < f$ se $\lim_{x \to 0^+} \frac{f}{g} = 0$ ossia $f = o(g)$)
Quesito n. 16 Date le funzioni f , g e h definite da $f(x) = 2^{(x^z)}$, $g(x) = x^{(2^z)}$ e $h(x) = (2^x)^x$. Allora per $x \to +\infty$ si ha:
Compito n.4 Cognome:
n.1 n.2 n.3 n.4 n.5 n.6 n.7 n.8 n.9 n.10 n.11 n.12 n.13 n.14 n.15 n.16 A<
non scrivere sotto questa linea Totale:

 ${\tt www.mat.uniroma2.it/^-callegar}$

Analisi Matematica 1, ing. Ambiente & Territorio, Energetica, Meccanica, Secondo esonero 02-12-05 Compito n.5 di Analisi Matematica 1, ing. Ambiente & Territorio, Energetica Meccanica, 02-12-05 Quesito n. 1 Date le funzioni f, g e h definite da $f(x) = \ln(\ln x)$, $g(x) = \ln^2 x$ e $h(x) = \sqrt{\ln x}$. Allora per $x \to +\infty$ si ha: Quesito n. 2 La funzione $\sqrt{|\sin x(1+\sin x)|}$ ha $\boxed{\text{A}}$ in $-\pi$ un punto angoloso e in $\frac{-\pi}{2}$ un punto angoloso $\boxed{\text{B}}$ in $-\pi$ una cuspide e in $\frac{-\pi}{2}$ un punto angoloso $\boxed{\text{C}}$ in $\frac{-\pi}{2}$ un punto in cui la funzione è derivabile $\overline{\mathbb{D}}$ in $-\pi$ una cuspide e in $\frac{-\pi}{2}$ una cuspide $\overline{\mathbb{E}}$ in $-\pi$ un punto angoloso $\overline{\mathbb{F}}$ in $\frac{-\pi}{2}$ una cuspide Quesito n. 3 Si calcoli il seguente limite $\lim_{x\to 0} \frac{\sin x - x \cos x}{x(e^{2x} - e^x - x)}$ $\frac{\boxed{\mathbf{A}} - \frac{2}{9} \quad \boxed{\mathbf{B}} \frac{-1}{2} \quad \boxed{\mathbf{C}} \quad \frac{1}{2} \quad \boxed{\mathbf{D}} \quad \frac{2}{9} \quad \boxed{\mathbf{E}} \quad \frac{2}{5} \quad \boxed{\mathbf{F}} \quad 0}$ $\mathbf{Quesito} \quad \mathbf{n.} \quad \mathbf{4} \quad \text{La funzione} \quad f(x) = \begin{cases} |x^2 + x| & -2 \le x \le 0 \\ \left|\frac{1}{x^2} - \frac{1}{x}\right| & x > 0 \end{cases} \quad \text{ha}$ Al non più di sei punti di estremo, un asintoto verticale, nessun asintoto orizzontale e un asintoto obliquo B esattamente quattro punti di estremo, un asintoto verticale, un asintoto <u>ori</u>zzontale, un asintoto obliquo C non più di tre punti di estremo, un asintoto verticale, un asintoto orizzontale ed uno obliquo D non più di sei punti di estremo, un asintoto verticale, un asintoto orizzontale, nessun asintoto obliquo E esattamente cinque punti di estremo, un asintoto verticale, un asintoto orizzontale, nessun asintoto obliquo 🗜 non più di quattro punti di estremo, nessun asintoto verticale, nessun asintoto orizzontale, un asintoto obliquo **Quesito n. 5** Sia data la funzione $f(x) = (x^x)^{2x}$. Allora $\frac{f'(x)}{2xf(x)}$ è uguale a: $A 3 \ln (2x) + 1$ $B 2 \ln (2x) + 1$ $C 2 \ln x + 1$ $D 4 \ln x + 1$ $E 2 \ln (3x) + 1$ $F 3 \ln x + 1$ Quesito n. 6 Si considerino le seguenti tre affermazioni e si dica quale delle A-G è vera. (1) È data una funzione $f: \mathbf{R} \to \mathbf{R}$ monotona strettamente crescente e derivabile. Allora $\lim_{x \to +\infty} f'(x) = +\infty$ (2) È data una funzione $g: \mathbf{R} \to \mathbf{R}$ tale che $\lim_{x \to +\infty} g(x) = 0$. Allora si ha $\lim_{x \to +\infty} g'(x) = 0$. (3) È data una funzione $g: \mathbf{R} \to \mathbf{R}$ tale che $\lim_{x \to +\infty} g(x) = 0$. Allora se A (1) è vera, (2) è falsa e (3) è vera (1) è vera, (2) è vera e (3) è falsa (2) è vera e (3) è vera (3) è vera (1) è falsa, (2) è falsa e (3) è falsa E (1) è falsa, (2) è falsa e (3) è vera E (1) è falsa, (2) è vera e (3) è falsa Quesito n. 7 Si ordinino secondo l'infinito crescente per $x \to +\infty$ le seguenti funzioni $f_1(x) = x^x$, $f_2(x) = e^{x\sqrt{\ln x}}$, $f_3(x) = x^{\sqrt{x}+2x}$ (l'ordinamento va eseguito nel modo seguente: g < f se $\lim_{x \to +\infty} \frac{f}{g} = +\infty$) A $f_3 < f_1 < f_2$ B $f_1 < f_2 < f_3$ C $f_1 < f_3 < f_2$ D $f_2 < f_3 < f_1$ E $f_3 < f_2 < f_1$ F $f_2 < f_1 < f_3$ Quesito n. 8 Il limite $\lim_{x \to 0} \frac{xe^x - \ln(1+x)}{\sin^2 x + (1-\cos x)}$ è uguale a: $A + \infty$ B non esiste $C - \frac{1}{3}$ D $\frac{1}{2}$ E 0 F 1 Quesito n. 9 Sia $f(x) = \arctan \frac{x+1}{2x+1}$. Allora f'(x) è uguale a: A = -1 B = 0 C = 2 D = -2 E = 3 E = 3 E = 1 Quesito n. 11 Data una funzione $f: [0,1] \cup [2,3] \to \mathbf{R}$ si consideri: (1) se f è continua è limitata (2) se f è continua invertibile allora f^{-1} è continua (3) se f è continua e invertibile è monotona. Si dica quale delle seguenti affermazioni è vera A (1) è vera, (2) è vera e (3) è falsa (1) è vera, (2) è vera e (3) è vera (2) è vera e (3) è falsa (2) è vera e (3) è falsa (2) è vera e (3) è falsa (3) è falsa (4) è vera e (5) è vera e (6) è falsa (7) è vera e (7) è falsa (8) è fal falsa, (2) è vera e (3) è vera 🗵 (1) è falsa, (2) è falsa e (3) è vera 🗜 (1) è vera, (2) è falsa e (3) è vera Quesito n. 12 Sia data una funzione $f:[0,3] \to \mathbf{R}$ continua e strettamente crescente. Sia data inoltre la funzione $g:[1,2] \to \mathbf{R}$ tale che g(x)=f(x) per ogni $x\in[1,2]$. Sia $G=\{y=g(x):x\in[1,2]\}$ l'insieme dei valori assunti da g(x). Si dica quale delle seguenti affermazioni è vera A G non ammette massimo B G può essere illimitato C G non ammette minimo D G ammette estremo inferiore ma non superiore $ext{ } ext{ } e$ Quesito n. 13 (1) sia $f:[a,b] \to \mathbf{R}$ una funzione derivabile tale che $x_o \in [a,b]$ è un punto di massimo. Allora esiste un intorno di x_o tale che $f'(x_o)(x-x_o) \le 0$ per ogni x appartenente all'intorno (2) sia $f:[a,b] \to \mathbf{R}$ una funzione derivabile tale che $x_o \in (a,b)$ è un punto di massimo. Allora $\exists \ \delta > 0: \ x \in (x_o - \delta, x_o + \delta) \Rightarrow \ f'(x_o)(x-x_o) < 0$ (3) sia $f:[0,1] \to \mathbf{R}$ una funzione derivabile. Allora f(x) - f(0) - f'(0)x = o(x) per $x \to 0^+$ (si assume che in x_o la funzione ha un minimo se esiste un intorno $(x_o - \delta, x_o + \delta)$

 $tale\ che\ f(x) \geq f(x_o)\ per\ x \in (x_o-\delta,x_o+\delta)\ e\ viceversa\ per\ il\ massimo))$ (In tutti e tre i casi con f si intende una qualsiasi funzione

(1) è falsa, (2) è falsa e (3) è vera (1) è vera, (2) è vera e (3) è vera (2) è falsa e (3) è vera

falsa, (2) è vera e (3) è vera (2) è vera e (3) è falsa (2) è vera e (3) è falsa (2) è vera e (3) è falsa

avente le caratteristiche date). Allora

Quesito n. 14 Data una funzione $f:[a,b] \to \mathbf{R}$ si consideri: (1) se f è continua è limitata (2) se f è continua è monotona (3) se f è monotona è continua. Si dica quale delle seguenti affermazioni è vera
A (1) è vera, (2) è vera e (3) è falsa B (1) è vera, (2) è falsa e (3) è vera C (1) è falsa, (2) è falsa e (3) è vera D (1) è
falsa, (2) è vera e (3) è vera E (1) è vera, (2) è falsa e (3) è falsa E (1) è vera, (2) è vera e (3) è vera
Quesito n. 15 Sia $f(x) = \ln(7 + 9\sin x + 5\cos x)$. Allora $f'(0)$ è eguale a
Quesito n. 16 Sia $f(x) = \beta - \frac{1}{2}x\sin x - \cos x + \alpha x^4$. Essa ha ordine di infinitesimo massimo per $x \to 0$ se e solo se
$\boxed{ \begin{array}{ccccccccccccccccccccccccccccccccccc$
Compito n.5 Cognome: Nome:
n.1 n.2 n.3 n.4 n.5 n.6 n.7 n.8 n.9 n.10 n.11 n.12 n.13 n.14 n.15 n.16 A<
non scrivere sotto questa linea Totale:

Compito n.6 di Analisi Matematica 1, ing. Ambiente& Territorio, Energetica Meccanica, 02-12-05
Quesito n. 1 Si ordinino secondo l'infinito crescente per $x \to +\infty$ le seguenti funzioni $f_1(x) = e^{\sqrt{x}}$, $f_2(x) = e^{\ln^2 x}$, $f_3(x) = x^{\sqrt{x}}$, (l'ordinamento va eseguito nel modo seguente: $g < f$ se $\lim_{x \to +\infty} \frac{f}{g} = +\infty$)
Quesito n. 2 (1) sia $f:[a,b] \to \mathbf{R}$ una funzione derivabile tale che $x_o \in [a,b]$ è un punto di minimo. Allora esiste un intorno di x_o tale che $f'(x_o)(x-x_o) \geq 0$ per ogni x appartenente all'intorno (2) sia $f:[a,b] \to \mathbf{R}$ una funzione derivabile tale che $x_o \in (a,b)$ è un punto di massimo. Allora $\exists \ \delta > 0 : x \in (x_o - \delta, x_o + \delta) \Rightarrow f'(x_o)(x-x_o) < 0$ (3) sia $f:[a,b] \to \mathbf{R}$ una funzione derivabile tale che $x_o \in (a,b)$ è un punto di minimo e $f'(x_o) = 0$. Allora $f''(x_o) > 0$ (3) sia $f:[a,b] \to \mathbf{R}$ una funzione derivabile tale che $x_o \in (a,b)$ è un punto di minimo e $f'(x_o) = 0$. Allora $f''(x_o) > 0$ (3) sia $f:[a,b] \to \mathbf{R}$ una funzione derivabile tale che $x_o \in (a,b)$ è un punto di minimo e $f'(x_o) = 0$ (3) sia $f:[a,b] \to \mathbf{R}$ una funzione derivabile tale che $x_o \in (a,b)$ è un punto di minimo. Allora esiste un intorno di $x_o \in (a,b)$ è un funzione derivabile tale che $x_o \in (a,b)$ è un punto di minimo. Allora esiste un intorno di $x_o \in (a,b)$ è un punto di minimo. Allora esiste un intorno di $x_o \in (a,b)$ è un punto di minimo. Allora esiste un intorno di $x_o \in (a,b)$ è un punto di minimo. Allora esiste un intorno di $x_o \in (a,b)$ è un punto di minimo. Allora esiste un intorno di $x_o \in (a,b)$ è un punto di minimo. Allora esiste un intorno di $x_o \in (a,b)$ è un punto di minimo. Allora esiste un intorno di $x_o \in (a,b)$ è un punto di minimo. Allora esiste un intorno di $x_o \in (a,b)$ è un punto di minimo. Allora esiste un intorno di $x_o \in (a,b)$ è un punto di minimo. Allora esiste un intorno di $x_o \in (a,b)$ è un punto di minimo. Allora esiste un intorno di $x_o \in (a,b)$ è un punto di minimo esiste un intorno di $x_o \in (a,b)$ è un punto di minimo esiste un intorno di $x_o \in (a,b)$ è un punto di minimo esiste un intorno di $x_o \in (a,b)$ è un punto di minimo esiste un intorno di $x_o \in (a,b)$ è un punto di minimo esiste un intorno di $x_o \in (a,b)$ è un punto di minimo esiste un intorno di $x_o \in (a,b)$ è un punto di minimo esiste un intorno di $x_o \in (a,b)$ è un punto di minimo es
A (1) è falsa, (2) è vera e (3) è vera B (1) è vera, (2) è falsa e (3) è falsa C (1) è vera, (2) è vera e (3) è falsa D (1) è vera, (2) è vera e (3) è vera e (3) è vera e (3) è falsa D (1) è vera, (2) è vera e (3) è vera e (3) è falsa
Quesito n. 3 Si considerino le seguenti tre affermazioni e si dica quale delle A-G è vera. (1) È data una funzione $f:[a,b] \to \mathbf{R}$ continua in $[a,b]$ e derivabile in (a,b) tale che $\lim_{x\to a^+} f'(x) = +\infty$. Allora $f'(a^+)$ non esiste in \mathbf{R} . (2) È data una funzione $f:[a,b] \to \mathbf{R}$ continua in $[a,b]$ e derivabile in (a,b) tale che $\lim_{x\to a^+} f'(x)$ non esiste. Allora $f'(a^+)$ non esiste in \mathbf{R} . (3) È data una funzione $h: \mathbf{R} \to \mathbf{R}$ derivabile tale che $h'(x)$ è illimitata inferiormente. Allora si ha $\lim_{x\to +\infty} h(x) = -\infty$
A (1) è falsa, (2) è falsa e (3) è falsa B (1) è vera, (2) è falsa e (3) è vera C (1) è falsa, (2) è vera e (3) è vera D (1) è falsa, (2) è vera e (3) è falsa E (1) è vera, (2) è falsa e (3) è falsa F (1) è falsa, (2) è falsa e (3) è vera
Quesito n. 4 Date le funzioni f , g e h definite da $f(x) = x^{x \ln x}$, $g(x) = (\ln x)^{x^2}$ e $h(x) = 2^{e^x}$. Allora per $x \to +\infty$ si ha:
Quesito n. 5 Sia $f(x) = \arctan \frac{2x+1}{x+1}$. Allora $f'(x)$ è uguale a:
$ \boxed{ \textbf{A} \; \frac{3}{2x^2-2x+5} \boxed{ \textbf{B} \; \frac{1}{5x^2+6x+2} \boxed{ \textbf{C} \; -\frac{1}{5x^2+6x+2} \boxed{ \textbf{D} \; \frac{3}{5x^2-2x+2} \boxed{ \textbf{E} \; -\frac{3}{5x^2-2x+2} \boxed{ \textbf{F} \; -\frac{3}{2x^2-2x+5} } } } $
Quesito n. 6 Sia $f(x) = \ln(1+x) - \sin x + \alpha x^2 + \beta x^3$. Essa ha ordine di infinitesimo massimo per $x \to 0$ se e solo se
$\boxed{ \boxed{ \underline{\mathbf{A}} \ \alpha = -\frac{1}{2}, \ \beta = \frac{1}{2} \boxed{\underline{\mathbf{B}} \ \alpha = \frac{1}{2}, \ \beta = 1 \boxed{\underline{\mathbf{C}} \ \alpha = \frac{1}{2}, \ \beta = -1 \boxed{\underline{\mathbf{D}} \ \alpha = \frac{1}{2}, \ \beta = \frac{1}{2} \boxed{\underline{\mathbf{E}} \ \alpha = 1, \ \beta = \frac{1}{2} \boxed{\underline{\mathbf{F}} \ \alpha = \frac{1}{2}, \ \beta = -\frac{1}{2} } }$
Quesito n. 7 Sia data la funzione $f(x) = \left(x^{x^2}\right)^x$. Allora $\frac{f'(x)}{x^2 f(x)}$ è uguale a:
Quesito n. 8 Il limite $\lim_{x\to 0} \frac{e^x \ln(1+x) - xe^{\frac{1}{2}x}}{3x^4 + (1-\cos x)}$ è uguale a:
$A + \infty$ B non esiste $C - 1$ D 1 $E - 2$ F 0
Quesito n. 9 Data una funzione $f:[0,1] \cup [2,3] \to \mathbf{R}$ si consideri: (1) se f è continua allora esiste $x_0 \in [0,1]$ tale che $f(x_0) = \frac{1}{2}(f(0) + f(1))$ (2) se f è continua allora esiste x_0 nel dominio tale che $f(x_0) = \frac{1}{2}(f(0) + f(3))$ (3) se f è strettamente monotona è invertibile. Si dica quale delle seguenti affermazioni è vera
A (1) è vera, (2) è vera e (3) è falsa B (1) è falsa, (2) è vera e (3) è vera C (1) è falsa, (2) è falsa e (3) è vera D (1) è falsa, (2) è falsa e (3) è vera E (1) è vera, (2) è falsa e (3) è vera E (1) è vera, (2) è vera e (3) è vera
Quesito n. 10 Il valore minimo di a per cui la funzione $f(x) = (2)^{-2x} + (\frac{1}{2})^x + x \ln 2$ è crescente se e solo se $x \in (a, +\infty)$ è
$oxed{A} a = 3 oxed{B} a = -2 oxed{C} a = 2 oxed{D} a = 0 oxed{E} a = -1 oxed{F} a = 1$
Quesito n. 11 Data una funzione $f:[a,b] \to \mathbf{R}$ si consideri: (1) se f è continua allora esiste $x_0 \in [a,b]$ tale che $f(x_0) = \frac{1}{2}(f(a) + f(b))$ (2) se f è invertibile è monotona (3) se f è derivabile è monotona. Si dica quale delle seguenti affermazioni è vera
A (1) è vera, (2) è vera e (3) è falsa B (1) è vera, (2) è falsa e (3) è falsa C (1) è vera, (2) è vera e (3) è vera D (1) è
vera, (2) è falsa e (3) è vera $\stackrel{[E]}{=}$ (1) è falsa, (2) è vera e (3) è vera $\stackrel{[F]}{=}$ (1) è falsa, (2) è falsa e (3) è vera $\stackrel{[F]}{=}$ Quesito n. 12 Sia $f(x) = \ln(3 + 8\sin x + 7\cos x)$. Allora $f'(0)$ è eguale a
$A = \frac{4}{5} B = \frac{3}{2} C_1 D = \frac{4}{9} E = \frac{4}{3} F = \frac{4}{7}$
Quesito n. 13 Sia data una funzione $f:[0,3] \to \mathbf{R}$ continua e strettamente crescente. Sia data inoltre la funzione $g:(1,2] \to \mathbf{R}$ tale che $g(x) = f(x)$ per ogni $x \in (1,2]$. Sia $G = \{y = g(x) : x \in (1,2]\}$ l'insieme dei valori assunti da $g(x)$. Si dica quale delle seguenti affermazioni è vera
$oxed{A}$ G ammette massimo ma non minimo $oxed{B}$ G può essere illimitato $oxed{C}$ G ammette minimo $oxed{D}$ G ammette estremo inferiore
ma non superiore $\stackrel{\frown}{E}$ G ammette massimo e minimo $\stackrel{\frown}{F}$ G non ammette estremo superiore nè inferiore
Quesito n. 14 Si calcoli il seguente limite $\lim_{x \to +\infty} \frac{e^{x^2} \sin x - x}{\tan x - \sin x}$
$A - \infty$ $B \frac{2}{3}e$ $C 0$ $D \frac{1}{4}$ $E \frac{-1}{2}$ $F \frac{5}{3}$

Quesito n. 15 La funzione $f(x) = \begin{cases} -x^2 e^{-x^2} & x \le 0 \\ \left \frac{1}{x} + 8x - 6 \right & x > 0 \end{cases}$ ha
A non più di cinque punti di estremo, un asintoto verticale, un asintoto orizzontale e nessun asintoto obliquo B non più di tre punti di estremo, nessun asintoto verticale, un asintoto orizzontale, nessun asintoto obliquo non più di quattro punti di estremo, un asintoto verticale, nessun asintoto orizzontale ed uno obliquo estremo, un asintoto verticale, un asintoto orizzontale ed uno obliquo asintoto orizzontale ed uno obliquo asintoto verticale, un asintoto orizzontale ed uno obliquo
Quesito n. 16 La funzione $\operatorname{arctan}(x x-1)^{1/3}$ ha A in 1 una cuspide e in 0 un flesso a tangente verticale B in 0 un punto in cui la funzione è derivabile C in 0 una cuspide e in 1 un flesso a tangente verticale e in 0 un punto angoloso E in 1 un punto angoloso e in 0 un punto angoloso E in 1 una cuspide e in 0 una cuspide
Compito n.6 Cognome: Nome: Nome: Nome:
Totale:

Analisi Matematica 1, ing. Ambiente & Territorio, Energetica, Meccanica, Secondo esonero 02-12-05
Compito n.7 di Analisi Matematica 1, ing. Ambiente& Territorio, Energetica Meccanica, 02-12-05
Quesito n. 1 La funzione $f(x) = \begin{cases} x^2 - x & 0 \le x \le 2 \\ -xe^x & x < 0 \end{cases}$ ha
A non più di cinque punti di estremo, nessun asintoto verticale, un asintoto orizzontale, nessun asintoto obliquo B esattamente quattro punti di estremo, nessun asintoto verticale, nessun asintoto orizzontale ed uno obliquo C esattamente quattro punti di estremo, nessun asintoto verticale, un asintoto orizzontale, nessun asintoto obliquo D esattamente quattro punti di estremo, nessun asintoto verticale, un asintoto orizzontale, un asintoto obliquo E non più di cinque punti di estremo, nessun asintoto verticale, nessun asintoto orizzontale, un asintoto obliquo F non più di cinque punti di estremo, nessun asintoto verticale, un asintoto orizzontale e un asintoto obliquo
Quesito n. 2 Si calcoli il seguente limite $\lim_{x\to 0} \frac{x^2\cos^2 x - e^{x^2} + 1}{x^2\sin^2 x}$
$\overline{A} - \frac{1}{2} \overline{B} 0 \overline{C} - \frac{3}{2} \overline{D} + \infty \overline{E} \frac{-1}{4} \overline{F} \frac{1}{2}$
Quesito n. 3 Sia data una funzione $f:[0,3] \to \mathbf{R}$ continua e strettamente decrescente. Sia data inoltre la funzione $g:(1,2] \to \mathbf{R}$ tale che $g(x) = f(x)$ per ogni $x \in (1,2]$. Sia $G = \{y = g(x) : x \in (1,2]\}$ l'insieme dei valori assunti da $g(x)$. Si dica quale delle seguenti affermazioni è vera A G può essere illimitato B G non ammette estremo superiore nè inferiore C G ammette minimo ma non massimo
ammette estremo inferiore ma non superiore G ammette massimo ma non minimo G ammette massimo e minimo G ammette massimo e minimo
Quesito n. 4 Date le funzioni f , g e h definite da $f(x) = \sqrt{e^{x^2} + x^x}$, $g(x) = (2x)^x$ e $h(x) = x^{2x}$. Allora per $x \to +\infty$ si ha:
Quesito n. 5 Sia $f(x) = \frac{1}{2}\ln(1+x^2) + \cos x + \beta + \alpha x^4$. Essa ha ordine di infinitesimo massimo per $x \to 0$ se e solo se
$\boxed{\textbf{A}} \ \alpha = \frac{1}{3}, \ \beta = 1 \boxed{\textbf{B}} \ \alpha = \frac{1}{3}, \ \beta = 1 \boxed{\textbf{C}} \ \alpha = -\frac{1}{4}, \ \beta = -1 \boxed{\textbf{D}} \ \alpha = \frac{5}{24}, \ \beta = -1 \boxed{\textbf{E}} \ \alpha = -\frac{7}{24}, \ \beta = -1 \boxed{\textbf{F}} \ \alpha = -\frac{1}{3}, \ \beta = 1$
Quesito n. 6 Data una funzione $f:[0,1] \cup [2,3] \to \mathbf{R}$ si consideri: (1) se f è continua allora esiste x_0 appartenente al dominio della funzione per cui $f(x_0) = \frac{1}{2}(f(3) + f(0))$ (2) se $f'(x) \ge 0$ allora la funzione è crescente (3) se f è invertibile e continua è monotona. Si dica quale delle seguenti affermazioni è vera
A (1) è falsa, (2) è vera e (3) è vera E (1) è falsa, (2) è vera e (3) è falsa C (1) è falsa, (2) è falsa e (3) è falsa E (1) è vera, (2) è falsa e (3) è falsa E (1) è vera, (2) è vera e (3) è vera E (1) è falsa, (2) è falsa e (3) è vera
Quesito n. 7 (1) sia $f:[0,1] \to \mathbf{R}$ una funzione derivabile tale che in $x_o \in [0,1]$ la funzione ha un minimo. Allora $f'(x_o) = 0$ (2) sia $f:[0,1] \to \mathbf{R}$ una funzione tale che in $x_o \in [0,1]$ ha un minimo. Allora f è derivabile in x_o (3) sia $f:[0,1] \to \mathbf{R}$ una funzione derivabile tale che $f'(x) > 0$ per ogni x . Ne segue che $f(x)$ è invertibile (In tutti e tre i casi con f si intende una qualsiasi funzione avente le caratteristiche date). Allora
A (1) è vera, (2) è vera e (3) è falsa B (1) è falsa, (2) è vera e (3) è vera C (1) è vera, (2) è falsa e (3) è vera falsa, (2) è vera e (3) è falsa E (1) è falsa, (2) è falsa e (3) è vera E (1) è vera, (2) è vera e (3) è vera
Quesito n. 8 Si considerino le seguenti tre affermazioni e si dica quale delle A-G è vera. (1) È data una funzione $f: \mathbf{R} \to \mathbf{R}$ che in $x = x_o$ ha un massimo. Allora la funzione è derivabile in $x = x_o$ e la derivata vale zero. (2) È data una funzione $g: \mathbf{R} \to \mathbf{R}$ che derivabile che in x_o ha un flesso con derivata prima nulla. Allora $g''(x_o)$ esiste e vale zero convessa. Allora f' esiste ed è crescente
A (1) è falsa, (2) è falsa e (3) è falsa B (1) è falsa, (2) è vera e (3) è vera C (1) è vera, (2) è falsa e (3) è vera D (1) è vera, (2) è vera e (3) è falsa E (1) è falsa, (2) è falsa e (3) è vera E (1) è falsa, (2) è vera e (3) è falsa
Quesito n. 9 Sia data la funzione $f(x) = ((3x)^x)^x$. Allora $\frac{f'(x)}{xf(x)}$ è uguale a:
$oxed{A} 3 \ln{(2x)} + 1 oxed{B} 4 \ln{x} + 1 oxed{C} 3 \ln{x} + 1 oxed{D} 2 \ln{(3x)} + 1 oxed{E} 2 \ln{x} + 1 oxed{F} 2 \ln{(2x)} + 1$
Quesito n. 10 Sia $f(x) = \arctan \frac{x+1}{2x-1}$. Allora $f'(x)$ è uguale a:
$\boxed{\textbf{A} - \frac{1}{5x^2 + 6x + 2}} \boxed{\textbf{B}} \frac{1}{5x^2 + 6x + 2} \boxed{\textbf{C}} \frac{3}{5x^2 - 2x + 2} \boxed{\textbf{D}} \frac{3}{2x^2 - 2x + 5} \boxed{\textbf{E}} - \frac{3}{2x^2 - 2x + 5} \boxed{\textbf{F}} - \frac{3}{5x^2 - 2x + 2}$
Quesito n. 11 La funzione $\sqrt{\frac{ x^2(x-1) }{ x+1 }}$ ha
A in 1 un punto angoloso e in 0 la funzione è derivabile B in 1 la funzione è derivabile e in 0 una cuspide C in 1 una cuspide e in 0 un punto angoloso D in 1 un punto angoloso e in 0 un punto angoloso E in 1 una cuspide e in 0 una cuspide F in 1 una cuspide e in 0 la funzione è derivabile
Quesito n. 12 Il valore minimo di a per cui la funzione $f(x)=(2)^{-2x}-(\frac{1}{2})^x+x\ln 2$ è crescente se e solo se $x\in(a,+\infty)$ è

Quesito n. 14 Si ordinino secondo l'infinitesimo crescente per $x \to 0^+$ le seguenti funzioni $f_1(x) = \frac{\sin x^2}{\tan(x^{\frac{3}{2}})}, f_2(x) = \frac{\ln(\cos x^2)}{-\sqrt{\cos x} + 1},$
$f_3(x) = \frac{\cos(\sin x) - 1}{\sin x}$, (l'ordinamento va eseguito nel modo seguente: $g < f$ se $\lim_{x \to 0^+} \frac{f}{g} = 0$ ossia $f = o(g)$)
Quesito n. 15 Data una funzione $f:[a,b)\to \mathbf{R}$ si consideri: (1) se f è continua è allora esiste $x_0\in[a,b)$ tale che $f(x_0)=\frac{1}{2}(f(a)+f(b))$ (2) se f è invertibile è monotona (3) se f è derivabile è invertibile. Si dica quale delle seguenti affermazioni è vera
A (1) è vera, (2) è vera e (3) è falsa (1) è falsa, (2) è vera e (3) è vera (2) è falsa e (3) è falsa (1) è
vera, (2) è falsa e (3) è vera
Quesito n. 16 Il limite $\lim_{x\to 0} \frac{\ln(1+2x)(1-\sin x)-2x}{\sin^2 x + \sin x^2}$ è uguale a:
$\boxed{ \mathbb{A}_{+\infty} } \boxed{ \mathbb{B}_2 } \boxed{ \mathbb{C}_{\frac{2}{3}} } \boxed{ \mathbb{D}_{\text{non esiste}} } \boxed{ \mathbb{E}_1 } \boxed{ \mathbb{F}_{-2} }$
Compito n.7 Cognome: Nome:
n.1 n.2 n.3 n.4 n.5 n.6 n.7 n.8 n.9 n.10 n.11 n.12 n.13 n.14 n.15 n.16 A<
non scrivere sotto questa linea

Analisi Matematica 1, ing. Ambiente & Territorio, Energetica, Meccanica, Secondo esonero 02-12-05 Compito n.8 di Analisi Matematica 1, ing. Ambiente& Territorio, Energetica Meccanica, 02-12-05 Quesito n. 1 Date le funzioni f, g e h definite da $f(x) = 2^{(x^x)}$, $g(x) = x^{(2^x)}$ e $h(x) = (2^x)^x$. Allora per $x \to +\infty$ si ha: $e \ f(x) = o(g(x)) \ E \ g(x) = o(h(x)) \ e \ h(x) = o(f(x)) \ E \ f(x) = o(g(x)) \ e \ g(x) = o(h(x))$ Quesito n. 2 La funzione $\sqrt{|\cos x(1+\cos x)|}$ ha $\underline{\mathbf{A}}$ in $\frac{\pi}{2}$ una cuspide e in π una cuspide $\underline{\mathbf{B}}$ in $\frac{\pi}{2}$ una cuspide e in π un punto angoloso $\underline{\mathbf{C}}$ in $\frac{\pi}{2}$ un punto angoloso $\underline{\mathbf{D}}$ in $\frac{\pi}{2}$ un punto angoloso e in π un punto angoloso $\stackrel{\textstyle \cdot}{\mathbb{E}}$ in π una cuspide $\stackrel{\textstyle \cdot}{\mathbb{F}}$ in π un punto in cui la funzione è derivabile Quesito n. 3 Data una funzione $f:[a,b)\to \mathbf{R}$ si consideri: (1) se f è continua è limitata (2) se f è continua è monotona (3) se f è derivabile è monotona. Si dica quale delle seguenti affermazioni è vera \boxed{A} (1) è vera, (2) è falsa e (3) è vera \boxed{B} (1) è vera, (2) è vera e (3) è vera \boxed{C} (1) è falsa, (2) è vera e (3) è falsa \boxed{D} (1) è falsa, (2) è vera e (3) è vera E nessuna delle altre risposte è esatta F (1) è vera, (2) è vera e (3) è falsa Quesito n. 4 Sia $f(x) = \arctan \frac{2x-1}{x+1}$. Allora f'(x) è uguale a: $A = \frac{1}{3} \quad B = \infty \quad C = \frac{3}{2} \quad D_0 \quad E = \frac{2}{3} \quad F = 1$ Quesito n. 6 Si considerino le seguenti tre affermazioni e si dica quale delle A–G è vera. (1) È data una funzione $f:[a,b)\to \mathbf{R}$ derivabile tale che $\lim_{x\to b^-} f(x) = +\infty$. Allora $\lim_{x\to b^-} f'(x) = +\infty$. (2) È data una funzione $g: \mathbf{R} \to \mathbf{R}$ tale che $\lim_{x \to +\infty} g(x) =$ (3) È data una funzione $f:[a,b)\to \mathbf{R}$ tale che |f'(x)| è 0. Allora non è detto che sia definitivamente positiva oppure negativa illimitata. Allora f(x) è illimitata. A (1) è falsa, (2) è vera e (3) è vera B (1) è vera, (2) è vera e (3) è vera C (1) è vera, (2) è falsa e (3) è vera D (1) è Quesito n. 7 Sia data la funzione $f(x) = (x^x)^{2x}$. Allora $\frac{f'(x)}{2xf(x)}$ è uguale a: A esattamente tre punti di estremo B esattamente cinque punti di estremo C esattamente due punti di estremo D esattamente un punto di estremo E esattamente sei punti di estremo E esattamente quattro punti di estremo Quesito n. 11 Sia $f(x) = \ln^2(1+x) - x^2 + \alpha x^3 + \beta x^4$. Essa ha ordine di infinitesimo massimo per $x \to 0$ se e solo se (2) sia $f:[0,1]\cup[2,3]\to\mathbf{R}$ una funzione derivabile tale che f'(x)>0 per ogni x. Allora f(x) è crescente sul suo (3) sia $f:[0,1] \cup [2,3] \to \mathbf{R}$ una funzione derivabile tale che f'(x) > 0 per ogni x. Ne segue che f(x) è invertibile (In dominio tutti e tre i casi con f si intende una qualsiasi funzione avente le caratteristiche date). Allora A (1) è vera, (2) è falsa e (3) è vera (2) è falsa e (3) è falsa e (3) è falsa e (3) è falsa e (3) è vera (1) è falsa, (2) è vera e (3) è falsa E (1) è falsa, (2) è vera e (3) è vera F (1) è vera, (2) è vera e (3) è vera Quesito n. 14 Data una funzione $f: [0,1] \cup [2,3] \to \mathbf{R}$ sia $g(x): [0,1] \to \mathbf{R}$ la f ristretta all'intervallo [0,1] $(g(x) = f|_{[0,1]})$. Si consideri: (1) se f è continua è limitata (2) se f è continua ed invertibile allora g(x) è monotona (3) se f è invertibile è monotona. Si dica quale delle seguenti affermazioni è vera A (1) è vera, (2) è vera e (3) è falsa (1) è falsa, (2) è vera e (3) è falsa (2) è vera e (3) è falsa, (2) è vera e (3) è vera e (4) è

Preparato con software sviluppato da Callegari Emanuele c/o dip. Matematica, Univ. Roma Tor Vergata

Quesito n. 15 Il limite $\lim_{x\to 0} \frac{xe^x - \ln(1+x)}{\sin^2 x + (1-\cos x)}$ è uguale a:

 $A = \frac{1}{2}$ B non esiste $C + \infty$ D $\frac{1}{2}$ E 0 F 1

Quesito n. 16 Sia data una funzione $f:[0,3] \to \mathbf{R}$ continua e strettamente decrescente. Sia data inoltre la funzione $g:[1,2] \to \mathbf{R}$ tale che $g(x) = f(x)$ per ogni $x \in [1,2]$. Sia $G = \{y = g(x) : x \in [1,2]\}$ l'insieme dei valori assunti da $g(x)$. Si dica quale delle seguenti
affermazioni è vera
$oxed{A}$ G ammette estremo inferiore ma non superiore $oxed{B}$ G ammette estremo superiore ma non inferiore $oxed{C}$ G è limitato $oxed{D}$ G
non ammette minimo $\stackrel{ ext{$f E$}}{ ext{$f G$}}$ non ammette massimo $\stackrel{ ext{$f F$}}{ ext{$f G$}}$ può essere illimitato
Compito n.8 Cognome: Nome:
n.1 n.2 n.3 n.4 n.5 n.6 n.7 n.8 n.9 n.10 n.11 n.12 n.13 n.14 n.15 n.16
non scrivere sotto questa linea Totale:

Analisi Matematica 1, ing. Ambiente & Territorio, Energetica, Meccanica, Secondo esonero 02-12-05 Compito n.9 di Analisi Matematica 1, ing. Ambiente& Territorio, Energetica Meccanica, 02-12-05 Quesito n. 1 Data una funzione $f:[a,b] \to \mathbf{R}$ si consideri: (1) se f è continua è limitata (3) se f è monotona è continia. Si dica quale delle seguenti affermazioni è vera A (1) è falsa, (2) è vera e (3) è vera B (1) è vera, (2) è vera e (3) è vera C (1) è vera, (2) è falsa e (3) è falsa D (1) è vera, (2) è falsa e (3) è vera (2) è vera e (3) è falsa (1) è falsa (2) è falsa e (3) è vera Quesito n. 2 Si considerino le seguenti tre affermazioni e si dica quale delle A-G è vera. (1) È data una funzione $f:[a,b]\to \mathbf{R}$ continua in [a,b] e derivabile in (a,b) tale che $\lim_{x\to a^+} f'(x) = +\infty$. Allora $f'(a^+)$ non esiste in \mathbf{R} . (2) È data una funzione $f:[a,b]\to\mathbf{R}$ continua in [a,b] e derivabile in (a,b) tale che $\lim_{x\to a^+} f'(x)$ non esiste. Allora $f'(a^+)$ non esiste in \mathbf{R} . (3) È data una funzione $h: \mathbf{R} \to \mathbf{R}$ derivabile tale che h'(x) è illimitata inferiormente. Allora si ha $\lim_{x \to +\infty} h(x) = -\infty$ \boxed{A} (1) è falsa, (2) è vera e (3) è falsa \boxed{B} (1) è falsa, (2) è falsa e (3) è vera \boxed{C} (1) è vera, (2) è falsa e (3) è vera \boxed{D} (1) è falsa, (2) è falsa e (3) è falsa E (1) è falsa, (2) è vera e (3) è vera E (1) è vera, (2) è falsa e (3) è falsa Quesito n. 3 Date le funzioni f, g e h definite da $f(x) = \ln(1+x^x)$, $g(x) = \ln(1+x^2)$ e $h(x) = \sqrt{\ln(1+e^{x^3})}$. Allora per $e \ g(x) = o(f(x)) \quad \stackrel{\smile}{=} g(x) = o(f(x)) \quad e \ f(x) = o(h(x)) \quad \stackrel{\smile}{=} f(x) = o(g(x)) \quad e \ g(x) = o(h(x))$ $\mathbf{Quesito \ n. \ 4} \quad \text{Si calcoli il seguente limite } \lim_{x \to 0} \frac{\tan^2 x - x \tan x}{(1 - \cos x)^2}$ $A_{\frac{1}{2}}$ B_0 $C_{\frac{1}{3}}$ $D_{\frac{4}{3}}$ E_1 $F_{\frac{2}{3}}$ Quesito n. 5 (1) sia $f:[a,b] \to \mathbf{R}$ una funzione derivabile tale che $x_o \in [a,b]$ è un punto di massimo. Allora esiste un intorno di x_o tale che $f'(x_o)(x-x_o) \le 0$ per ogni x appartenente all'intorno (2) sia $f:[a,b] \to \mathbf{R}$ una funzione derivabile tale che $x_o \in (a,b)$ è un punto di massimo. Allora $\exists \delta > 0: x \in (x_o - \delta, x_o + \delta) \Rightarrow f'(x_o)(x-x_o) < 0$ (3) sia $f:[0,1] \to \mathbf{R}$ una funzione derivabile. Allora f(x) - f(0) - f'(0)x = o(x) per $x \to 0^+$ (si assume che in x_o la funzione ha un minimo se esiste un intorno $(x_o - \delta, x_o + \delta)$ $tale\ che\ f(x) \ge f(x_o)\ per\ x \in (x_o - \delta, x_o + \delta)\ e\ viceversa\ per\ il\ massimo))$ (In tutti e tre i casi con f si intende una qualsiasi funzione avente le caratteristiche date). Allora A (1) è vera, (2) è vera e (3) è falsa B (1) è vera, (2) è vera e (3) è vera C (1) è vera, (2) è falsa e (3) è vera D (1) è falsa, (2) è vera e (3) è vera E (1) è falsa, (2) è vera e (3) è falsa F (1) è falsa, (2) è falsa e (3) è vera Quesito n. 6 La funzione $f(x) = \begin{cases} -x^2 e^{-x^2} & x \le 0 \\ \left| \frac{1}{x} + 8x - 6 \right| & x > 0 \end{cases}$ ha A non più di cinque punti di estremo, un asintoto verticale, un asintoto orizzontale e nessun asintoto obliquo B almeno cinque punti di estremo, un asintoto verticale, un asintoto orizzontale ed uno obliquo 🖸 non più di tre punti di estremo, nessun asintoto verticale, un asintoto orizzontale, nessun asintoto obliquo Desattamente tre tre punti di estremo, un asintoto verticale, un asintoto orizzontale ed uno obliquo E non più di quattro punti di estremo, un asintoto verticale, nessun asintoto orizzontale ed uno obliquo F non più di quattro punti di estremo, un asintoto verticale, un asintoto orizzontale ed uno obliquo Quesito n. 7 Sia $f(x) = \cos x - e^{-\frac{x^2}{2}} + \alpha x^4 + \beta - \cos x^3$. Essa ha ordine di infinitesimo massimo per $x \to 0$ se e solo se che g(x) = f(x) per ogni $x \in (1, 2]$. Sia $G = \{y = g(x) : x \in (1, 2]\}$ l'insieme dei valori assunti da g(x). Si dica quale delle seguenti affermazioni è vera A G ammette estremo inferiore ma non superiore B G ammette massimo e minimo C G non ammette estremo superiore nè inferiore D G ammette massimo ma non minimo E G ammette minimo F G può essere illimitato Quesito n. 9 Sia data la funzione $f(x) = \left(x^{x^2}\right)^x$. Allora $\frac{f'(x)}{x^2 f(x)}$ è uguale a: A $2 \ln (3x) + 1$ B $4 \ln x + 1$ C $2 \ln x + 1$ D $2 \ln (2x) + 1$ E $3 \ln (2x) + 1$ F $3 \ln x + 1$ Quesito n. 10 La funzione $\arctan (x|x-1|)^{1/3}$ ha A in 0 una cuspide e in 1 un flesso a tangente verticale B in 0 un punto in cui la funzione è derivabile C in 1 un punto angoloso e in 0 un punto angoloso D in 1 una cuspide e in 0 una cuspide E in 1 una cuspide e in 0 un flesso a tangente verticale E in 1 un flesso a tangente verticale e in 0 un punto angoloso Quesito n. 11 Data una funzione $f:[0,1]\cup[2,3]\to\mathbf{R}$ si consideri: (1) se f è continua allora esiste $x_0\in[0,1]$ tale che $f(x_0)=$ (2) se f è continua allora esiste x_0 nel dominio tale che $f(x_0) = \frac{1}{2}(f(0) + f(3))$ (3) se f è strettamente monotona è invertibile. Si dica quale delle seguenti affermazioni è vera A (1) è vera, (2) è vera e (3) è vera B (1) è vera, (2) è falsa e (3) è vera C (1) è falsa, (2) è vera e (3) è vera D (1) è falsa, (2) è falsa e (3) è falsa E (1) è vera, (2) è vera e (3) è falsa E (1) è falsa, (2) è falsa e (3) è vera Quesito n. 12 Sia $f(x) = \arctan \frac{2x+1}{x+1}$. Allora f'(x) è uguale a:

Quesito n. 13 Si ordinino secondo l'infinito crescente per $x \to +\infty$ le seguenti funzioni $f_1(x) = e^{x^{3/2}/\ln^2 x}$, $f_2(x) = e^{x \ln(\ln x)}$, $f_3(x) = e^{\sqrt{x} \ln^4 x}$, (l'ordinamento va eseguito nel modo seguente: g < f se $\lim_{x \to +\infty} \frac{f}{g} = +\infty$)

A $f_2 < f_1 < f_3$ B $f_1 < f_2 < f_3$ C $f_3 < f_2 < f_1$ D $f_2 < f_3 < f_1$ E $f_1 < f_3 < f_2$ F $f_3 < f_1 < f_2$ Quesito n. 14 Sia $f(x) = \ln(3 + 8 \sin x + 7 \cos x)$. Allora f'(0) è eguale a

A $\frac{4}{9}$ B $\frac{3}{2}$ C $\frac{4}{7}$ D $\frac{4}{3}$ E $\frac{4}{5}$ E $\frac{4}{5}$ Quesito n. 15 Il limite $\lim_{x \to 0} \frac{e^{2x} \ln(1 + x) - \sin x}{\sin^2 x + \ln^2(1 + x)}$ è uguale a:

A $\frac{4}{9}$ B non esiste C $\frac{3}{4}$ D $\frac{4}{2}$ E $\frac{1}{2}$ F $\frac{2}{3}$ Quesito n. 16 Il valore minimo di a per cui la funzione $f(x) = (2)^{-2x+2} + 2(\frac{1}{2})^x + x \ln 2$ è crescente se e solo se $x \in (a, +\infty)$ è

A $\frac{4}{9}$ B $\frac{3}{9}$ C $\frac{4}{9}$ D $\frac{4}$

mains Adventured 1, ing. American de Territorio, Energetted, Accedented, Decordo Casterio de 12 av
Compito n.10 di Analisi Matematica 1, ing. Ambiente & Territorio, Energetica Meccanica, 02-12-05
Quesito n. 1 La funzione $f(x) = \begin{cases} \sin x & -2\pi \le x \le 0 \\ xe^{-x} & 0 < x \end{cases}$ ha
A esattamente quattro punti di estremo, nessun asintoto verticale, un asintoto orizzontale B esattamente sei punti di estremo, un asintoto orizzontale un asintoto obliquo D esattamente sei punti di estremo, nessun asintoto verticale, nessun asintoto orizzontale E esattamente quattro punti di estremo, nessun asintoto verticale, nessun asintoto obliquo F esattamente cinque punti di estremo, un asintoto verticale, un asintoto orizzontale
Quesito n. 2 Date le funzioni f , g e h definite da $f(x) = (\sqrt{x})^{\ln x}$, $g(x) = (\ln x)^{\sqrt{x}}$ e $h(x) = x^{\sqrt{\ln x}}$. Allora per $x \to +\infty$ si ha:
$\boxed{\textbf{A}} \ \alpha = -4, \ \beta = -\frac{8}{3} \boxed{\textbf{B}} \ \alpha = -2, \ \beta = -\frac{8}{3} \boxed{\textbf{C}} \ \alpha = -4, \ \beta = -2 \boxed{\textbf{D}} \ \alpha = 1, \ \beta = -\frac{8}{3} \boxed{\textbf{E}} \ \alpha = -4, \ \beta = 0 \boxed{\textbf{F}} \ \alpha = -4, \ \beta = -1$
Quesito n. 4 (1) sia $f:[0,1] \to \mathbf{R}$ una funzione derivabile tale che in $x_o \in [0,1]$ la funzione ha un minimo. Allora $f'(x_o) = 0$ (2) sia $f:[0,1] \to \mathbf{R}$ una funzione tale che in $x_o \in [0,1]$ ha un minimo. Allora f è derivabile in x_o (3) sia $f:[0,1] \to \mathbf{R}$ una funzione derivabile tale che $f'(x) > 0$ per ogni x . Ne segue che $f(x)$ è invertibile (In tutti e tre i casi con f si intende una qualsiasi funzione avente le caratteristiche date). Allora
A (1) è vera, (2) è vera e (3) è vera B (1) è falsa, (2) è vera e (3) è falsa C (1) è vera, (2) è vera e (3) è falsa D (1) è vera, (2) è falsa e (3) è vera E (1) è falsa, (2) è falsa e (3) è vera E (1) è falsa, (2) è falsa e (3) è vera E (1) è falsa, (2) è falsa e (3) è vera E (1) è falsa, (2) è falsa e (3) è vera E (1) è falsa, (2) è falsa e (3) è vera e (3) è falsa E (1) è falsa, (2) è falsa e (3) è vera e (3) è falsa e (3) è vera e (4) è
Quesito n. 5 Il limite $\lim_{x\to 0} \frac{\ln(1-2x)(1+\sin 2x)-2x}{(e^x-1)^2}$ è uguale a:
$oxed{A}_1 oxed{B}_4 oxed{C}_{-1} oxed{D}_{ ext{non esiste}} oxed{E}_0 oxed{F}_{+\infty}$
Quesito n. 6 Si calcoli il seguente limite $\lim_{x\to 0} \frac{\sin x - x \cos x}{x(e^{2x} - e^x - x)}$
$A \stackrel{?}{=} B \stackrel{?}{=} C \stackrel{?}{=} D \stackrel{-1}{=} E_0 F_{\frac{1}{2}}$
Quesito n. 7 Data una funzione $f:[a,b)\to \mathbf{R}$ si consideri: (1) se f è continua è allora esiste $x_0\in[a,b)$ tale che $f(x_0)=\frac{1}{2}(f(a)+f(b))$ (2) se f è invertibile è monotona (3) se f è derivabile è invertibile. Si dica quale delle seguenti affermazioni è vera
A (1) è falsa, (2) è falsa e (3) è falsa B (1) è falsa, (2) è vera e (3) è vera C (1) è vera, (2) è vera e (3) è falsa D (1) è vera, (2) è vera e (3) è vera E (1) è vera, (2) è falsa e (3) è falsa B (1) è vera, (2) è falsa e (3) è vera
Quesito n. 8 Si ordinino secondo l'infinitesimo crescente per $x \to 0^+$ le seguenti funzioni $f_1(x) = xe^{-1/x}$, $f_2(x) = e^{-1/x^2}$, $f_3(x) = x^{1/x}$, (l'ordinamento va eseguito nel modo seguente: $g < f$ se $\lim_{x \to 0^+} \frac{f}{g} = 0$ ossia $f = o(g)$)
$oxed{A} \ f_2 < f_3 < f_1 egin{array}{ c c c c c } \hline A \ f_2 < f_3 < f_2 & \hline C \ f_3 < f_2 < f_1 & \hline D \ f_2 < f_1 < f_3 & \hline E \ f_3 < f_1 < f_2 & \hline E \ f_1 < f_2 < f_3 \\ \hline \end{array}$
$oxed{A} a = 3 oxed{B} a = 0 oxed{C} a = 1 oxed{D} a = -2 oxed{E} a = 2 oxed{F} a = -1$
Quesito n. 10 Data una funzione $f: [0,1] \cup [2,3] \to \mathbf{R}$ si consideri: (1) se f è continua allora esiste x_0 appartenente al dominio della funzione per cui $f(x_0) = \frac{1}{2}(f(3) + f(0))$ (2) se $f'(x) \ge 0$ allora la funzione è crescente (3) se f è invertibile e continua è monotona. Si dica quale delle seguenti affermazioni è vera
A (1) è vera, (2) è falsa e (3) è falsa B (1) è falsa, (2) è falsa e (3) è falsa C (1) è falsa, (2) è vera e (3) è vera D (1) è
falsa, (2) è vera e (3) è falsa (2) è vera, (2) è vera e (3) è vera (1) è falsa, (2) è falsa e (3) è vera
Quesito n. 11 La funzione $\sqrt{ \sin x(1+\sin x) }$ ha
A in $-\pi$ un punto angoloso B in $\frac{-\pi}{2}$ un punto in cui la funzione è derivabile C in $-\pi$ una cuspide e in $\frac{-\pi}{2}$ un punto angoloso D in $\frac{-\pi}{2}$ una cuspide E in $-\pi$ una cuspide e in $\frac{-\pi}{2}$ una cuspide F in $-\pi$ un punto angoloso e in $\frac{-\pi}{2}$ un punto angoloso
Quesito n. 12 Sia data una funzione $f:[0,3] \to \mathbf{R}$ continua e strettamente crescente. Sia data inoltre la funzione $g:[1,2] \to \mathbf{R}$ tale che $g(x) = f(x)$ per $ogni \ x \in [1,2]$. Sia $G = \{y = g(x) : x \in [1,2]\}$ l'insieme dei valori assunti da $g(x)$. Si dica quale delle seguenti affermazioni è vera
$oxed{A}$ G ammette estremo superiore ma non inferiore $oxed{B}$ G ammette estremo inferiore ma non superiore $oxed{C}$ G può essere illimitato $oxed{D}$ G non ammette minimo $oxed{E}$ G è limitato $oxed{F}$ G non ammette massimo
Quesito n. 13 Sia $f(x) = \arctan \frac{x+1}{x-2}$. Allora $f'(x)$ è uguale a:
* 2

Analisi Matematica 1, ing. Ambiente & Territorio, Energetica, Meccanica, Secondo esonero 02-12-05
Quesito n. 14 Si considerino le seguenti tre affermazioni e si dica quale delle A-G è vera. (1) È data una funzione $f: \mathbf{R} \to \mathbf{R}$ derivabile monotona strettamente crescente tale che $\lim_{x\to +\infty} f(x) = +\infty$. Può aversi $\lim_{x\to +\infty} f'(x) = 0$. (2) È data una funzione $f: \mathbf{R} \to \mathbf{R}$ derivabile monotona strettamente crescente tale che $\lim_{x\to +\infty} f(x) = +\infty$. Può aversi $f'(x) = 0$ su di un insieme illimitato (3) È data una funzione $h: [a, b] \to \mathbf{R}$ derivabile per cui la derivata prima è una funzione strettamente crescente. Allora h ha la concavità rivolta verso l'alto \mathbf{A} (1) è vera, (2) è falsa e (3) è vera \mathbf{B} (1) è falsa, (2) è vera e (3) è vera \mathbf{C} (1) è vera, (2) è vera e (3) è falsa \mathbf{D} (1) è falsa, (2) è vera e (3) è vera
Quesito n. 15 Sia data la funzione $f(x) = \left(x^{x^3}\right)^x$. Allora $\frac{f'(x)}{x^3 f(x)}$ è uguale a:
$f A \ 4 \ln x + 1 f B \ 2 \ln (2x) + 1 f C \ 2 \ln (3x) + 1 f D \ 3 \ln x + 1 f E \ 2 \ln x + 1 f F \ 3 \ln (2x) + 1$
Quesito n. 16 Sia $f(x) = \ln(2 + 14\sin x + 4\cos x)$. Allora $f'(0)$ è eguale a
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Compito n.10 Cognome: Nome:
n.1 n.2 n.3 n.4 n.5 n.6 n.7 n.8 n.9 n.10 n.11 n.12 n.13 n.14 n.15 n.16 A<

www.mat.uniroma2.it/-callegar

Analisi Matematica 1, ing. Ambiente & Territorio, Energetica, Meccanica, Secondo esonero 02-12-05 Compito n.11 di Analisi Matematica 1, ing. Ambiente & Territorio, Energetica Meccanica, 02-12-05 Quesito n. 1 Data una funzione $f:[0,1]\cup[2,3]\to\mathbf{R}$ si consideri: (1) se f è continua allora esiste $x_0\in[0,1]$ tale che $f(x_0)=$ (2) se f è continua allora esiste x_0 nel dominio tale che $f(x_0) = \frac{1}{2}(f(0) + f(3))$ (3) se f è strettamente monotona è invertibile. Si dica quale delle seguenti affermazioni è vera A (1) è vera, (2) è falsa e (3) è vera B (1) è falsa, (2) è vera e (3) è vera C (1) è falsa, (2) è falsa e (3) è falsa D (1) è falsa, (2) è falsa e (3) è vera (1) è vera, (2) è vera e (3) è falsa (1) è vera, (2) è vera e (3) è vera **Quesito n. 2** Sia data la funzione $f(x) = ((3x)^x)^x$. Allora $\frac{f'(x)}{xf(x)}$ è uguale a: Quesito n. 3 Si ordinino secondo l'infinito crescente per $x \to +\infty$ le seguenti funzioni $f_1(x) = e^{\sqrt{x}}$, $f_2(x) = e^{\ln^2 x}$, $f_3(x) = x^{\sqrt{x}}$, (l'ordinamento va eseguito nel modo seguente: g < f se $\lim_{x \to +\infty} \frac{f}{g} = +\infty$) A in 0 un punto in cui la funzione è derivabile B in 1 una cuspide e in 0 un flesso a tangente verticale C in 0 una cuspide e in 1 un flesso a tangente verticale D in 1 un punto angoloso e in 0 un punto angoloso E in 1 un flesso a tangente verticale e in 0 un punto angoloso 🕒 in 1 una cuspide e in 0 una cuspide Quesito n. 5 Sia $f(x) = \arctan \frac{x+1}{2x+1}$. Allora f'(x) è uguale a: $A_0 B_{-\frac{1}{3}} C_{-1} D_{-\frac{2}{3}} E_{-\frac{3}{2}} F_{+\infty}$ Quesito n. 7 Data una funzione $f:[a,b] \to \mathbf{R}$ si consideri: (1) se f è continua è limitata (2) se f è continua è monotona (3) se f è monotona è continia. Si dica quale delle seguenti affermazioni è vera A (1) è falsa, (2) è falsa e (3) è vera (2) è falsa e (3) è vera (2) è vera, (2) è vera (3) è vera (1) è vera, (2) è vera (3) è vera vera, (2) è vera e (3) è falsa $\stackrel{\textstyle oxdot{}}{\textstyle oxdot{}}$ (1) è falsa, (2) è vera e (3) è vera $\stackrel{\textstyle oxdot{}}{\textstyle oxdot{}}$ (1) è vera, (2) è falsa e (3) è falsa Quesito n. 8 Sia $f(x) = \frac{1}{2} \ln(1+x^2) + \cos x + \beta + \alpha x^4$. Essa ha ordine di infinitesimo massimo per $x \to 0$ se e solo se $\frac{\boxed{\textbf{A}} \ \frac{5}{9} \quad \boxed{\textbf{B}} \ \frac{5}{3} \quad \boxed{\textbf{C}} \ \frac{5}{4} \quad \boxed{\textbf{D}} \ \frac{5}{6} \quad \boxed{\textbf{E}} \ 1 \quad \boxed{\textbf{F}} \ \frac{5}{7}}{\mathbf{Quesito} \ \mathbf{n.} \ \mathbf{10} \ \ \text{Il limite} \lim_{x \to 0} \frac{\ln(1+2x)\left(1-\sin 2x\right)-2x}{x^2+\sin x^2} \ \text{è uguale a:}$ $A_4 B_2 C_0 D_{+\infty} E_{\text{non esiste}} F_{-3}$ Quesito n. 11 Si considerino le seguenti tre affermazioni e si dica quale delle A-G è vera. (1) È data una funzione $f:[a,b)\to \mathbf{R}$ (2) È data una funzione $g: \mathbf{R} \to \mathbf{R}$ tale che $\lim_{x \to +\infty} g(x) =$ derivabile tale che $\lim_{x\to b^-} f(x) = +\infty$. Allora $\lim_{x\to b^-} f'(x) = +\infty$. (3) È data una funzione $f:[a,b)\to \mathbf{R}$ tale che |f'(x)| è 0. Allora non è detto che sia definitivamente positiva oppure negativa illimitata. Allora f(x) è illimitata. \boxed{A} (1) è falsa, (2) è vera e (3) è falsa \boxed{B} (1) è falsa, (2) è vera e (3) è vera \boxed{C} (1) è falsa, (2) è falsa e (3) è vera \boxed{D} (1) è vera, (2) è falsa e (3) è vera $\stackrel{\textstyle \longleftarrow}{=}$ (1) è vera, (2) è vera e (3) è vera $\stackrel{\textstyle \longleftarrow}{=}$ (1) è vera, (2) è vera e (3) è vera $\stackrel{\textstyle \longleftarrow}{=}$ (1) è vera, (2) è vera e (3) è falsa $\stackrel{\textstyle \longleftarrow}{=}$ (1) è vera, (2) è vera e (3) è falsa $\stackrel{\textstyle \longleftarrow}{=}$ (1) è vera, (2) è vera e (3) è falsa $\stackrel{\textstyle \longleftarrow}{=}$ (2) è vera e (3) è falsa $\stackrel{\textstyle \longleftarrow}{=}$ (1) è vera, (2) è vera e (3) è falsa $\stackrel{\textstyle \longleftarrow}{=}$ (2) è vera e (3) è falsa $\stackrel{\textstyle \longleftarrow}{=}$ (3) è vera e (3) è vera e (3) è falsa $\stackrel{\textstyle \longleftarrow}{=}$ (1) è vera, (2) è vera e (3) è falsa $\stackrel{\textstyle \longleftarrow}{=}$ (3) è vera e (3) è falsa $\stackrel{\textstyle \longleftarrow}{=}$ (1) è vera, (2) è vera e (3) è falsa $\stackrel{\textstyle \longleftarrow}{=}$ (2) è vera e (3) è falsa $\stackrel{\textstyle \longleftarrow}{=}$ (3) è vera e (3) è vera e (3) è vera e (3) è falsa $\stackrel{\textstyle \longleftarrow}{=}$ (3) è vera e (3) è vera e (3) è falsa $\stackrel{\textstyle \longleftarrow}{=}$ (3) è vera e (3) è vera e (3) è falsa $\stackrel{\textstyle \longleftarrow}{=}$ (3) è vera e (3) è falsa $\stackrel{\textstyle \longleftarrow}{=}$ (3) è vera e (3) è falsa $\stackrel{\textstyle \longleftarrow}{=}$ (3) è falsa e (3) è vera e (3) è falsa $\stackrel{\textstyle \longleftarrow}{=}$ (4) è falsa e (5) è fals A (1) è vera, (2) è falsa e (3) è vera (1) è vera, (2) è vera e (3) è vera (2) è vera e (3) è vera (3) è falsa (2) è vera e (3) è falsa (1) è $\frac{\text{falsa, (2) è falsa e (3) è vera}}{\text{Quesito n. 13 La funzione } f(x) = \begin{cases} |\sin x| & -2\pi \le x \le 0 \\ xe^{-x} & 0 < x \end{cases}} \text{ ha}$

Al esattamente quattro punti di estremo, nessun asintoto verticale, un asintoto orizzontale un asintoto orizzontale un asintoto orizzontale un asintoto orizzontale, un asintoto orizzontale, un asintoto orizzontale, un asintoto orizzontale un asintoto orizzontale un asintoto orizzontale un asintoto verticale, un asintoto verticale, un asintoto verticale, un asintoto orizzontale un asintoto verticale, un asintoto verticale, nessun asintoto verticale,

orizzontale

Quesito n. 14 Date le funzioni f , g e h definite da $f(x) = \left(\sqrt{x}\right)^{\ln x}$, $g(x) = (\ln x)^{\sqrt{x}}$ e $h(x) = x^{\sqrt{\ln x}}$. Allora per $x \to +\infty$ si ha:
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Quesito n. 15 Il valore minimo di a per cui la funzione $f(x)=(2)^{-2x+2}+2(\frac{1}{2})^x+x\ln 2$ è crescente se e solo se $x\in(a,+\infty)$ è
$oxed{A} a = 1 oxed{B} a = 0 oxed{C} a = 3 oxed{D} a = 2 oxed{E} a = -2 oxed{F} a = -1$
Quesito n. 16 Sia data una funzione $f:[0,3] \to \mathbf{R}$ continua e strettamente crescente. Sia data inoltre la funzione $g:[1,2] \to \mathbf{R}$ tale che $g(x) = f(x)$ per $ogni \ x \in [1,2]$. Sia $G = \{y = g(x) \colon x \in [1,2]\}$ l'insieme dei valori assunti da $g(x)$. Si dica quale delle seguenti affermazioni è vera $\boxed{\mathbb{A}}$ G non ammette massimo $\boxed{\mathbb{B}}$ G ammette estremo superiore ma non inferiore $\boxed{\mathbb{C}}$ G non ammette minimo $\boxed{\mathbb{D}}$ G può essere illimitato $\boxed{\mathbb{E}}$ G ammette estremo inferiore ma non superiore $\boxed{\mathbb{F}}$ G è limitato
Compito n.11 Cognome:
n.1 n.2 n.3 n.4 n.5 n.6 n.7 n.8 n.9 n.10 n.11 n.12 n.13 n.14 n.15 n.16 A<
non scrivere sotto questa linea Totale:

Compito n.12 di Analisi Matematica 1, ing. Ambiente & Territorio, Energetica Meccanica, 02-12-05 Quesito n. 1 Data una funzione $f:[0,1] \cup [2,3] \to \mathbf{R}$ sia $g(x):[0,1] \to \mathbf{R}$ la f ristretta all'intervallo [0,1] ($g(x)=f|_{[0,1]}$). Si consideri: (1) se f è continua è limitata (2) se f è continua ed invertibile allora g(x) è monotona (3) se f è invertibile è monotona. Si dica quale delle seguenti affermazioni è vera A (1) è vera, (2) è falsa e (3) è vera B (1) è falsa, (2) è vera e (3) è vera C (1) è falsa, (2) è vera e (3) è falsa D (1) è vera, (2) è vera e (3) è vera (3) è vera (2) è vera e (3) è falsa F (1) è falsa, (2) è falsa e (3) è vera F Quesito n. 2 Sia F (2) F Sia F (3) è vera F Essa ha ordine di infinitesimo massimo per F 0 se e solo se Quesito n. 4 Si calcoli il seguente limite $\lim_{x\to 0} \frac{\sin x - x \cos x}{x(e^{2x} - e^x - x)}$ $A_0 B_{\frac{2}{9}} C_{-\frac{2}{9}} D_{\frac{1}{2}} E_{\frac{2}{5}} F_{-\frac{1}{2}}$ Quesito n. 5 Si considerino le seguenti tre affermazioni e si dica quale delle A-G è vera. (1) È data una funzione $f: \mathbf{R} \to \mathbf{R}$ monotona strettamente crescente e derivabile. Allora $\lim_{x\to +\infty} f'(x) = +\infty$ (2) È data una funzione $g: \mathbf{R} \to \mathbf{R}$ tale che $\lim_{x\to +\infty} g(x) = 0$. Allora si ha $\lim_{x\to +\infty} g'(x) = 0$. (3) È data una funzione $g: \mathbf{R} \to \mathbf{R}$ tale che $\lim_{x\to +\infty} g(x) = 0$. Allora se esiste $\lim_{x\to+\infty} g'(x)$ esso è 0. A (1) è falsa, (2) è falsa e (3) è vera B (1) è vera, (2) è falsa e (3) è vera C (1) è falsa, (2) è falsa e (3) è falsa vera, (2) è vera e (3) è falsa E (1) è falsa, (2) è vera e (3) è falsa E (1) è falsa, (2) è vera e (3) è falsa Quesito n. 6 Si ordinino secondo l'infinitesimo crescente per $x \to 0^+$ le seguenti funzioni $f_1(x) = \frac{\sin x^2}{\tan(x^{\frac{3}{2}})}, f_2(x) = \frac{\ln(\cos x^2)}{-\sqrt{\cos x} + 1}$ $f_3(x) = \frac{\cos(\sin x) - 1}{\sin x}, \text{ (l'ordinamento va eseguito nel modo seguente: } g < f \text{ se } \lim_{x \to 0^+} \frac{f}{g} = 0 \text{ ossia } f = o(g))$ A non più di tre punti di estremo, un asintoto verticale, un asintoto orizzontale ed uno obliquo estremo, un asintoto verticale, un asintoto orizzontale, un asintoto obliquo C esattamente cinque punti di estremo, un asintoto verticale, un asintoto orizzontale, nessun asintoto obliquo D non più di sei punti di estremo, un asintoto verticale, nessun asintoto orizzontale e un asintoto obliquo E non più di sei punti di estremo, un asintoto verticale, un asintoto orizzontale, nessun asintoto obliquo 🗜 non più di quattro punti di estremo, nessun asintoto verticale, nessun asintoto orizzontale, un asintoto obliquo **Quesito n. 9** La funzione $\sqrt{|\sin x(1+\sin x)|}$ ha $oxed{A}$ in $-\pi$ un punto angoloso $oxed{B}$ in $-\pi$ un punto angoloso e in $\frac{-\pi}{2}$ un punto angoloso $oxed{C}$ in $\frac{-\pi}{2}$ un punto in cui la funzione è derivabile $\boxed{\mathbb{D}}$ in $\frac{-\pi}{2}$ una cuspide $\boxed{\mathbb{E}}$ in $-\pi$ una cuspide e in $\frac{-\pi}{2}$ un punto angoloso $\boxed{\mathbb{F}}$ in $-\pi$ una cuspide e in $\frac{-\pi}{2}$ una cuspide Quesito n. 10 Il valore minimo di a per cui la funzione $f(x) = (2)^{-2x+1} + 3(\frac{1}{2})^x + x \ln 2$ è crescente se e solo se $x \in (a, +\infty)$ è Quesito n. 12 (1) Data una funzione $f:[a,b] \to \mathbf{R}$ derivabile in $(a,b), x_o \in (a,b)$ è un punto di massimo oppure di minimo; allora (2) sia $f:[0,1] \cup [2,3] \to \mathbf{R}$ una funzione derivabile tale che f'(x) > 0 per ogni x. Allora f(x) è crescente sul suo (3) sia $f:[0,1]\cup[2,3]\to\mathbf{R}$ una funzione derivabile tale che f'(x)>0 per ogni x. Ne segue che f(x) è invertibile (In tutti e tre i casi con f si intende una qualsiasi funzione avente le caratteristiche date). Allora A (1) è vera, (2) è vera e (3) è vera B (1) è falsa, (2) è vera e (3) è falsa C (1) è falsa, (2) è vera e (3) è vera D (1) è vera, (2) è falsa e (3) è falsa $\stackrel{\text{E}}{=}$ (1) è falsa, (2) è falsa e (3) è vera $\stackrel{\text{F}}{=}$ (1) è vera, (2) è falsa e (3) è vera $\stackrel{\text{Quesito n. 13}}{=}$ Sia $f(x) = \ln(7 + 9\sin x + 5\cos x)$. Allora f'(0) è eguale a

Quesito n. 14 Sia data una funzione $f:[0,3] \to \mathbf{R}$ continua e strettamente decrescente. Sia data inoltre la funzione $g:[1,2] \to \mathbf{R}$
tale che $g(x) = f(x)$ per ogni $x \in [1, 2]$. Sia $G = \{y = g(x) : x \in [1, 2]\}$ l'insieme dei valori assunti da $g(x)$. Si dica quale delle seguenti affermazioni è vera
$oxed{\mathbb{A}}$ G ammette estremo inferiore ma non superiore $oxed{\mathbb{B}}$ G può essere illimitato $oxed{\mathbb{C}}$ G è limitato $oxed{\mathbb{D}}$ G ammette estremo superiore ma non inferiore $oxed{\mathbb{E}}$ G non ammette massimo $oxed{\mathbb{F}}$ G non ammette minimo
Quesito n. 15 Sia data la funzione $f(x) = (x^x)^{2x}$. Allora $\frac{f'(x)}{2xf(x)}$ è uguale a:
Quesito n. 16 Data una funzione $f:[a,b] \to \mathbf{R}$ si consideri: (1) se f è continua è limitata (2) se f è monotona è invertibile (3) se f è continua e monotona è derivabile. Si dica quale delle seguenti affermazioni è vera
A (1) è falsa, (2) è falsa e (3) è vera B (1) è vera, (2) è vera e (3) è falsa C (1) è vera, (2) è vera e (3) è vera E (1) è vera, (2) è falsa e (3) è vera E (1) è vera, (2) è falsa e (3) è falsa
Compito n.12 Cognome: Nome:
A A
non scrivere sotto questa linea Totale:

Compito n.13 di Analisi Matematica 1, ing. Ambiente& Territorio, Energetica Meccanica, 02-12-05

Quesito n. 1 Sia data la funzione $f(x) = \left(x^{x^2}\right)^x$. Allora $\frac{f'(x)}{x^2 f(x)}$ è uguale a:
$oxed{A} \ 3 \ln{(2x)} + 1 oxed{B} \ 2 \ln{x} + 1 oxed{C} \ 4 \ln{x} + 1 oxed{D} \ 3 \ln{x} + 1 oxed{E} \ 2 \ln{(2x)} + 1 oxed{F} \ 2 \ln{(3x)} + 1$
Quesito n. 2 Sia $f(x) = \ln(8 + 5\sin x + \cos x)$. Allora $f'(0)$ è eguale a
$A frac{5}{7} frac{B}{5} frac{5}{9} frac{C}{4} frac{5}{4} frac{E}{6} frac{5}{6} frac{5}{3}$
$\frac{\boxed{A} \ \frac{5}{7} \boxed{B} \ \frac{5}{9} \boxed{C} \ \frac{5}{4} \boxed{D} \ _{1} \boxed{E} \ \frac{5}{6} \boxed{F} \ \frac{5}{3}}{}$ $\boxed{\textbf{Quesito n. 3 Sia} f(x) = \arctan \frac{2x-1}{x+1}. \text{Allora } f'(x) \text{ è uguale a:}}$
Quesito n. 4 Data una funzione $f:[a,b] \to \mathbf{R}$ si consideri: (1) se f è continua è limitata (2) se f è continua è monotona (3) se f è monotona è continua. Si dica quale delle seguenti affermazioni è vera
A (1) è falsa, (2) è vera e (3) è vera B (1) è vera, (2) è falsa e (3) è vera C (1) è vera, (2) è vera e (3) è vera D (1) è falsa, (2) è falsa e (3) è vera E (1) è vera, (2) è falsa e (3) è falsa F (1) è vera, (2) è vera e (3) è falsa Quesito n. 5 Il valore minimo di a per cui la funzione $f(x) = (2)^{-2x+1} - 3(\frac{1}{2})^x + x \ln 2$ è crescente se e solo se $x \in (a, +\infty)$ è
Quesito n. 5 Il valore minimo di a per cui la funzione $f(x)=(2)^{-2x+1}-3(\frac{1}{2})^x+x\ln 2$ è crescente se e solo se $x\in(a,+\infty)$ è
Quesito n. 6 La funzione $\sqrt{ \sin x(1-\sin x) }$ ha
A in 0 una cuspide e in $\frac{\pi}{2}$ una cuspide B in 0 un punto in cui la funzione è derivabile e in $\frac{\pi}{2}$ una cuspide C in $\frac{\pi}{2}$ un punto in cui la funzione è derivabile D in 0 un punto angoloso e in $\frac{\pi}{2}$ un punto angoloso E in 0 una cuspide e in $\frac{\pi}{2}$ un punto angoloso
E in 0 un punto angoloso e in $\frac{\pi}{2}$ un punto in cui è derivabile
Quesito n. 7 Data una funzione $f:[0,1] \cup [2,3] \to \mathbb{R}$ si consideri: (1) se f è monotona è limitata (2) se f è continua è limitata
(3) se f è monotona è continua. Si dica quale delle seguenti affermazioni è vera
\overline{A} (1) è vera, (2) è vera e (3) è falsa \overline{B} (1) è falsa, (2) è vera e (3) è falsa \overline{C} (1) è falsa, (2) è falsa e (3) è vera \overline{D} (1) è
falsa, (2) è vera e (3) è vera E (1) è vera, (2) è falsa e (3) è vera E (1) è vera, (2) è vera e (3) è vera
Quesito n. 8 La funzione $f(x) = \begin{cases} \sin x & -2\pi \le x \le 0 \\ xe^{-x} & 0 < x \end{cases}$ ha
A esattamente cinque punti di estremo, un asintoto verticale, un asintoto orizzontale B esattamente quattro punti di estremo, nessun asintoto verticale, nessun asintoto orizzontale D esattamente sei punti di estremo, un asintoto orizzontale E esattamente quattro punti di estremo, nessun asintoto orizzontale E esattamente quattro punti di estremo, nessun asintoto orizzontale E esattamente quattro punti di estremo, nessun asintoto verticale, un asintoto orizzontale E esattamente quattro punti di estremo, nessun asintoto verticale, un asintoto orizzontale E esattamente sei punti di estremo, un asintoto orizzontale un asintoto orizzontale un asintoto orizzontale un asintoto estremo, un asintoto estremo, un asintoto orizzontale un asintoto estremo, un asint
obliquo Quesito n. 9 (1) sia $f:[a,b] \to \mathbf{R}$ una funzione derivabile tale che $x_o \in [a,b]$ è un punto di minimo. Allora esiste un intorno di x_o tale che $f'(x_o)(x-x_o) \ge 0$ per ogni x appartenente all'intorno (2) sia $f:[a,b] \to \mathbf{R}$ una funzione derivabile tale che $x_o \in (a,b)$ è un punto di massimo. Allora $\exists \delta > 0 : x \in (x_o - \delta, x_o + \delta) \Rightarrow f'(x_o)(x-x_o) < 0$ (3) sia $f:[a,b] \to \mathbf{R}$ una funzione derivabile tale che $x_o \in (a,b)$ è un punto di minimo e $f'(x_o) = 0$. Allora $f''(x_o) > 0$ (si assume che in x_o la funzione ha un minimo se esiste
un interno $(x_o - \delta, x_o + \delta)$ tale che $f(x) \ge f(x_o)$ per $x \in (x_o - \delta, x_o + \delta)$ e viceversa per il massimo)) (In tutti e tre i casi con f si
un interno $(x_o - \delta, x_o + \delta)$ tale che $f(x) \ge f(x_o)$ per $x \in (x_o - \delta, x_o + \delta)$ e viceversa per il massimo)) (In tutti e tre i casi con f si intende una qualsiasi funzione avente le caratteristiche date). Allora A (1) è vera, (2) è vera e (3) è falsa B (1) è vera, (2) è vera e (3) è vera e (3) è falsa D (1) è
un interno $(x_o - \delta, x_o + \delta)$ tale che $f(x) \ge f(x_o)$ per $x \in (x_o - \delta, x_o + \delta)$ e viceversa per il massimo)) (In tutti e tre i casi con f si intende una qualsiasi funzione avente le caratteristiche date). Allora A (1) è vera, (2) è vera e (3) è falsa B (1) è vera, (2) è vera e (3) è vera C (1) è falsa, (2) è vera e (3) è falsa D (1) è vera, (2) è falsa e (3) è vera E (1) è falsa, (2) è vera e (3) è falsa
un interno $(x_o - \delta, x_o + \delta)$ tale che $f(x) \ge f(x_o)$ per $x \in (x_o - \delta, x_o + \delta)$ e viceversa per il massimo)) (In tutti e tre i casi con f si intende una qualsiasi funzione avente le caratteristiche date). Allora A (1) è vera, (2) è vera e (3) è falsa B (1) è vera, (2) è vera e (3) è vera e (3) è falsa D (1) è
un interno $(x_o - \delta, x_o + \delta)$ tale che $f(x) \ge f(x_o)$ per $x \in (x_o - \delta, x_o + \delta)$ e viceversa per il massimo)) (In tutti e tre i casi con f si intende una qualsiasi funzione avente le caratteristiche date). Allora A (1) è vera, (2) è vera e (3) è falsa B (1) è vera, (2) è vera e (3) è vera C (1) è falsa, (2) è vera e (3) è falsa D (1) è vera, (2) è falsa e (3) è vera E (1) è falsa, (2) è vera e (3) è vera E (1) è vera, (2) è falsa e (3) è falsa Quesito n. 10 Si ordinino secondo l'infinito crescente per $x \to +\infty$ le seguenti funzioni $f_1(x) = e^{\sqrt{x}}$, $f_2(x) = e^{\ln^2 x}$, $f_3(x) = x^{\sqrt{x}}$, (l'ordinamento va eseguito nel modo seguente: $g < f$ se $\lim_{x \to +\infty} \frac{f}{g} = +\infty$) A $f_3 < f_2 < f_1$ B $f_3 < f_1 < f_2$ C $f_2 < f_3 < f_1$ D $f_2 < f_1 < f_3$ E $f_1 < f_3 < f_2$ F $f_1 < f_2 < f_3$
un interno $(x_o - \delta, x_o + \delta)$ tale che $f(x) \ge f(x_o)$ per $x \in (x_o - \delta, x_o + \delta)$ e viceversa per il massimo)) (In tutti e tre i casi con f si intende una qualsiasi funzione avente le caratteristiche date). Allora A (1) è vera, (2) è vera e (3) è falsa B (1) è vera, (2) è vera e (3) è vera C (1) è falsa, (2) è vera e (3) è falsa D (1) è vera, (2) è falsa e (3) è vera E (1) è falsa, (2) è vera e (3) è vera C (2) è falsa e (3) è falsa Quesito n. 10 Si ordinino secondo l'infinito crescente per $x \to +\infty$ le seguenti funzioni $f_1(x) = e^{\sqrt{x}}$, $f_2(x) = e^{\ln^2 x}$, $f_3(x) = x^{\sqrt{x}}$, (l'ordinamento va eseguito nel modo seguente: $g < f$ se $\lim_{x \to +\infty} \frac{f}{g} = +\infty$)
un interno $(x_o - \delta, x_o + \delta)$ tale che $f(x) \ge f(x_o)$ per $x \in (x_o - \delta, x_o + \delta)$ e viceversa per il massimo)) (In tutti e tre i casi con f si intende una qualsiasi funzione avente le caratteristiche date). Allora A (1) è vera, (2) è vera e (3) è falsa B (1) è vera, (2) è vera e (3) è vera C (1) è falsa, (2) è vera e (3) è falsa D (1) è vera, (2) è falsa e (3) è vera E (1) è falsa, (2) è vera e (3) è vera E (1) è vera, (2) è falsa e (3) è falsa C Quesito n. 10 Si ordinino secondo l'infinito crescente per $x \to +\infty$ le seguenti funzioni $f_1(x) = e^{\sqrt{x}}$, $f_2(x) = e^{\ln^2 x}$, $f_3(x) = x^{\sqrt{x}}$, (l'ordinamento va eseguito nel modo seguente: $g < f$ se $\lim_{x \to +\infty} \frac{f}{g} = +\infty$) A $f_3 < f_2 < f_1$ B $f_3 < f_1 < f_2$ C $f_2 < f_3 < f_1$ D $f_2 < f_1 < f_3$ E $f_1 < f_3 < f_2$ F $f_1 < f_2 < f_3$ Quesito n. 11 Date le funzioni f , g e f definite da $f(x) = x^{x \ln x}$, f and f and f are f and f are f and f are f and f are f are f and f are f are f are f are f and f are f are f are f are f are f and f are f are f are f are f are f are f and f are f ar
un interno $(x_o - \delta, x_o + \delta)$ tale che $f(x) \ge f(x_o)$ per $x \in (x_o - \delta, x_o + \delta)$ e viceversa per il massimo)) (In tutti e tre i casi con f si intende una qualsiasi funzione avente le caratteristiche date). Allora A (1) è vera, (2) è vera e (3) è falsa B (1) è vera, (2) è vera e (3) è vera C (1) è falsa, (2) è vera e (3) è falsa D (1) è vera, (2) è falsa e (3) è vera E (1) è falsa, (2) è vera e (3) è vera E (1) è vera, (2) è falsa e (3) è falsa Quesito n. 10 Si ordinino secondo l'infinito crescente per $x \to +\infty$ le seguenti funzioni $f_1(x) = e^{\sqrt{x}}$, $f_2(x) = e^{\ln^2 x}$, $f_3(x) = x^{\sqrt{x}}$, (l'ordinamento va eseguito nel modo seguente: $g < f$ se $\lim_{x \to +\infty} \frac{f}{g} = +\infty$) A $f_3 < f_2 < f_1$ B $f_3 < f_1 < f_2$ C $f_2 < f_3 < f_1$ D $f_2 < f_1 < f_3$ E $f_1 < f_3 < f_2$ F $f_1 < f_2 < f_3$ Quesito n. 11 Date le funzioni f , g e h definite da $f(x) = x^{x \ln x}$, $g(x) = (\ln x)^{x^2}$ e $h(x) = 2^{e^x}$. Allora per $x \to +\infty$ si ha: A $g(x) = o(f(x))$ e $f(x) = o(h(x))$ B $g(x) = o(h(x))$ e $h(x) = o(f(x))$ C $f(x) = o(g(x))$ e $g(x) = o(h(x))$ D $f(x) = o(h(x))$ e $h(x) = o(f(x))$ e $f(x) = o(f(x))$
un interno $(x_o - \delta, x_o + \delta)$ tale che $f(x) \ge f(x_o)$ per $x \in (x_o - \delta, x_o + \delta)$ e viceversa per il massimo)) (In tutti e tre i casi con f si intende una qualsiasi funzione avente le caratteristiche date). Allora A (1) è vera, (2) è vera e (3) è falsa B (1) è vera, (2) è vera e (3) è vera C (1) è falsa, (2) è vera e (3) è falsa D (1) è vera, (2) è falsa e (3) è vera E (1) è falsa, (2) è vera e (3) è vera E (1) è vera, (2) è falsa e (3) è falsa C Quesito n. 10 Si ordinino secondo l'infinito crescente per $x \to +\infty$ le seguenti funzioni $f_1(x) = e^{\sqrt{x}}$, $f_2(x) = e^{\ln^2 x}$, $f_3(x) = x^{\sqrt{x}}$, (l'ordinamento va eseguito nel modo seguente: $g < f$ se $\lim_{x \to +\infty} \frac{f}{g} = +\infty$) A $f_3 < f_2 < f_1$ B $f_3 < f_1 < f_2$ C $f_2 < f_3 < f_1$ D $f_2 < f_1 < f_3$ E $f_1 < f_3 < f_2$ F $f_1 < f_2 < f_3$ Quesito n. 11 Date le funzioni f , g e f definite da $f(x) = x^{x \ln x}$, f and f and f are f and f are f and f are f and f are f are f and f are f are f are f are f and f are f are f are f are f are f and f are f are f are f are f are f are f and f are f ar
un intorno $(x_o - \delta, x_o + \delta)$ tale che $f(x) \ge f(x_o)$ per $x \in (x_o - \delta, x_o + \delta)$ e viceversa per il massimo) (In tutti e tre i casi con f si intende una qualsiasi funzione avente le caratteristiche date). Allora A (1) è vera, (2) è vera e (3) è falsa B (1) è vera, (2) è vera e (3) è vera C (1) è falsa, (2) è vera e (3) è falsa D (1) è vera, (2) è falsa e (3) è vera E (1) è falsa, (2) è vera e (3) è vera E (1) è vera, (2) è falsa e (3) è falsa D (1) è falsa D (1) è vera, (2) è falsa e (3) è falsa D (1) è falsa e (3)
un intorno $(x_o - \delta, x_o + \delta)$ tale che $f(x) \ge f(x_o)$ per $x \in (x_o - \delta, x_o + \delta)$ e viceversa per il massimo)) (In tutti e tre i casi con f si intende una qualsiasi funzione avente le caratteristiche date). Allora A (1) è vera, (2) è vera e (3) è falsa B (1) è vera, (2) è vera e (3) è vera C (1) è falsa, (2) è vera e (3) è falsa D (1) è vera, (2) è falsa e (3) è vera E (1) è falsa, (2) è vera e (3) è vera E (1) è vera, (2) è falsa e (3) è falsa Quesito n. 10 Si ordinino secondo l'infinito crescente per $x \to +\infty$ le seguenti funzioni $f_1(x) = e^{\sqrt{x}}$, $f_2(x) = e^{\ln^2 x}$, $f_3(x) = x^{\sqrt{x}}$, (l'ordinamento va eseguito nel modo seguente: $g < f$ se $\lim_{x \to +\infty} \frac{f}{g} = +\infty$) A $f_3 < f_2 < f_1$ B $f_3 < f_1 < f_2$ C $f_2 < f_3 < f_1$ D $f_2 < f_1 < f_3$ E $f_1 < f_3 < f_2$ F $f_1 < f_2 < f_3$ Quesito n. 11 Date le funzioni f , g e h definite da $f(x) = x^{x \ln x}$, $g(x) = (\ln x)^{x^2}$ e $h(x) = 2^{e^x}$. Allora per $x \to +\infty$ is ha: A $g(x) = o(f(x))$ e $f(x) = o(h(x))$ B $g(x) = o(h(x))$ e $h(x) = o(f(x))$ C $f(x) = o(g(x))$ e $g(x) = o(h(x))$ D $f(x) = o(h(x))$ e $h(x) = o(g(x))$ E $h(x) = o(f(x))$ e $f(x) = o(g(x))$ e $f(x) = o(f(x))$ D $f(x) = o(h(x))$ e $f(x) = o(f(x))$
un intorno $(x_o - \delta, x_o + \delta)$ tale che $f(x) \ge f(x_o)$ per $x \in (x_o - \delta, x_o + \delta)$ e viceversa per il massimo)) (In tutti e tre i casi con f si intende una qualsiasi funzione avente le caratteristiche date). Allora A (1) è vera, (2) è vera e (3) è falsa B (1) è vera, (2) è vera e (3) è vera C (1) è falsa, (2) è vera e (3) è falsa D (1) è vera, (2) è falsa e (3) è falsa B (1) è vera, (2) è vera e (3) è vera E (1) è falsa, (2) è vera e (3) è vera E (1) è vera, (2) è falsa e (3) è falsa B (1) è vera, (2) è falsa e (3) è falsa B (1) è vera, (2) è falsa e (3) è falsa B (1) è vera, (2) è falsa e (3) è falsa B (1) è vera, (2) è vera e (3) è vera E (1) è vera, (2) è falsa e (3) è falsa B (1) è vera, (2) è falsa e (3) è falsa B (1) è vera, (2) è falsa e (3) è falsa B (1) è vera, (2) è falsa e (3) è falsa B (1) è vera, (2) è falsa e (3) è falsa B (1) è vera, (2) è falsa e (3) è falsa B (1) è vera, (2) è falsa e (3) è falsa B (1) è vera, (2) è falsa e (3) è falsa B (1) è vera, (2) è falsa e (3) è falsa B (1) è vera, (2) è falsa e (3) è falsa B (1) è vera, (2) è falsa e (3) è falsa B (1) è vera, (2) è falsa e (3) è falsa B (1) è vera, (2) è falsa e (3) è falsa B (1) è vera, (2) è falsa e (3) è falsa B (1) è vera, (2) è falsa e (3) è vera B (2) è vera e (3) è falsa B (1) è vera, (2) è vera

Quesito n. 14 Sia data una funzione $f:[0,3] \to \mathbf{R}$ continua e strettamente decrescente. Sia data inoltre la funzione $g:(1,2] \to \mathbf{R}$ tale che $g(x) = f(x)$ per $ogni\ x \in (1,2]$. Sia $G = \{y = g(x) : x \in (1,2]\}$ l'insieme dei valori assunti da $g(x)$. Si dica quale delle seguenti affermazioni è vera A G non ammette estremo superiore nè inferiore G ammette massimo ma non minimo G G ammette estremo inferiore ma non superiore G
Quesito n. 15 Sia $f(x) = \ln^2(1+x) - x^2 + \alpha x^3 + \beta x^4$. Essa ha ordine di infinitesimo massimo per $x \to 0$ se e solo se
$\boxed{\textbf{A}} \ \alpha = 1, \ \beta = -2 \boxed{\textbf{B}} \ \alpha = 1, \ \beta = \frac{1}{2} \boxed{\textbf{C}} \ \alpha = \frac{1}{2}, \ \beta = -1 \boxed{\textbf{D}} \ \alpha = 1, \ \beta = -\frac{11}{12} \boxed{\textbf{E}} \ \alpha = -\frac{11}{12}, \ \beta = 1 \boxed{\textbf{F}} \ \alpha = \frac{7}{8}, \ \beta = 1$
Quesito n. 16 Si calcoli il seguente limite $\lim_{x\to 0} \frac{x^2\cos^2 x - e^{x^2} + 1}{x^2\sin^2 x}$ $\boxed{A} - \frac{3}{2} \boxed{B} + \infty \boxed{C} \frac{-1}{4} \boxed{D} \frac{1}{2} \boxed{E} - \frac{1}{2} \boxed{F} 0$
Compito n.13 Cognome: Nome: Nome: Nome
non scrivere sotto questa linea

 ${\tt www.mat.uniroma2.it/^-callegar}$

Compito n.14 di Analisi Matematica 1, ing. Ambiente& Territorio, Energetica Meccanica, 02-12-05
Quesito n. 1 La funzione $\sqrt{\frac{ x^2(x-1) }{ x+1 }}$ ha
A in 1 un punto angoloso e in 0 la funzione è derivabile B in 1 una cuspide e in 0 la funzione è derivabile C in 1 un punto angoloso e in 0 un punto angoloso D in 1 una cuspide e in 0 una cuspide e in 1 una cuspide e in 0 un punto angoloso 1 la funzione è derivabile e in 0 una cuspide
Quesito n. 2 Data una funzione $f:[a,b] \to \mathbf{R}$ si consideri: (1) se f è continua allora esiste $x_0 \in [a,b]$ tale che $f(x_0) = \frac{1}{2}(f(a) + f(b))$ (2) se f è invertibile è monotona (3) se f è derivabile è monotona. Si dica quale delle seguenti affermazioni è vera
A (1) è falsa, (2) è vera e (3) è vera E (1) è vera, (2) è falsa e (3) è falsa C (1) è vera, (2) è falsa e (3) è vera e (3) è vera (2) è falsa e (3) è vera E (1) è vera, (2) è vera e (3) è vera E (1) è vera, (2) è falsa e (3) è vera
Quesito n. 3 Si ordinino secondo l'infinito crescente per $x \to +\infty$ le seguenti funzioni $f_1(x) = e^{x^{3/2}/\ln^2 x}$, $f_2(x) = e^{x \ln(\ln x)}$ $f_3(x) = e^{\sqrt{x} \ln^4 x}$, (l'ordinamento va eseguito nel modo seguente: $g < f$ se $\lim_{x \to +\infty} \frac{f}{g} = +\infty$)
Quesito n. 4 Si calcoli il seguente limite $\lim_{x \to +\infty} \frac{e^{x^2} \sin x - x}{\tan x - \sin x}$
$A_1 B_{\frac{4}{9}} C_{\frac{4}{5}} D_{\frac{3}{2}} E_{\frac{4}{7}} F_{\frac{4}{3}}$
A esattamente quattro punti di estremo, un asintoto verticale, un asintoto orizzontale ed uno obliquo B non più di cinque punt di estremo, un asintoto verticale, un asintoto orizzontale ed uno obliquo C non più di quattro punti di estremo, un asintoto verticale, un asintoto orizzontale e nessun asintoto obliquo D non più di tre punti di estremo, un asintoto verticale, nessun asintoto orizzontale ed un asintoto obliquo E almeno sei punti di estremo, un asintoto verticale, un asintoto orizzontale e nessun asintoto obliquo E non più di cinque punti di estremo, nessun asintoto verticale, un asintoto orizzontale, nessun asintoto obliquo
Quesito n. 7 Sia $f(x) = \cos x - e^{-\frac{x^2}{2}} + \alpha x^4 + \beta - \cos x^3$. Essa ha ordine di infinitesimo massimo per $x \to 0$ se e solo se \boxed{A} $\alpha = -1$, $\beta = \frac{1}{4}$ \boxed{B} $\alpha = \frac{3}{4}$, $\beta = 1$ \boxed{C} $\alpha = \frac{1}{12}$, $\beta = 1$ \boxed{D} $\alpha = \frac{1}{24}$, $\beta = \frac{1}{4}$ \boxed{E} $\alpha = \frac{1}{3}$, $\beta = \frac{1}{4}$ \boxed{F} $\alpha = \frac{1}{4}$, $\beta = 1$
Quesito n. 8 Il limite $\lim_{x\to 0} \frac{e^{2x} \ln(1+x) - \sin x}{\sin^2 x + \ln^2(1+x)}$ è uguale a:
$\boxed{\mathrm{A}}_{+\infty} \hspace{0.2cm} \boxed{\mathrm{B}}_{\frac{1}{2}} \hspace{0.2cm} \boxed{\mathrm{C}}_{\frac{3}{4}} \hspace{0.2cm} \boxed{\mathrm{D}}_{\mathrm{non}} \hspace{0.2cm} \mathrm{esiste} \hspace{0.2cm} \boxed{\mathrm{E}}_{-\frac{2}{3}} \hspace{0.2cm} \boxed{\mathrm{F}}_{2}$
Quesito n. 9 Date le funzioni f , g e h definite da $f(x) = (\sqrt{x})^{\ln x}$, $g(x) = (\ln x)^{\sqrt{x}}$ e $h(x) = x^{\sqrt{\ln x}}$. Allora per $x \to +\infty$ si ha
Quesito n. 10 Sia data la funzione $f(x) = (x^x)^{3x}$. Allora $\frac{f'(x)}{3xf(x)}$ è uguale a:
Quesito n. 11 Sia data una funzione $f:[0,3] \to \mathbf{R}$ continua e strettamente crescente. Sia data inoltre la funzione $g:(1,2) \to \mathbf{R}$ talche $g(x) = f(x)$ per $ogni\ x \in (1,2)$. Sia $G = \{y = g(x) : x \in (1,2)\}$ l'insieme dei valori assunti da $g(x)$. Si dica quale delle seguent affermazioni è vera
$oxed{A}$ G può essere illimitato $oxed{B}$ G ammette estremo inferiore ma non superiore $oxed{C}$ G ammette minimo $oxed{D}$ G ammette estremo superiore ma non inferiore $oxed{E}$ G ammette massimo $oxed{F}$ G ammette estremo superiore e inferiore
Quesito n. 12 (1) sia $f:[0,1] \to \mathbf{R}$ una funzione derivabile tale che in $x_o \in [0,1]$ la funzione ha un minimo. Allora $f'(x_o) = 0$ (2) sia $f:[0,1] \to \mathbf{R}$ una funzione tale che in $x_o \in [0,1]$ ha un minimo. Allora f è derivabile in x_o (3) sia $f:[0,1] \to \mathbf{R}$ una funzione derivabile tale che $f'(x) > 0$ per ogni x . Ne segue che $f(x)$ è invertibile (In tutti e tre i casi con f si intende una qualsias funzione avente le caratteristiche date). Allora
A (1) è vera, (2) è vera e (3) è vera B (1) è vera, (2) è falsa e (3) è vera C (1) è falsa, (2) è vera e (3) è falsa D (1) e falsa, (2) è falsa e (3) è vera E (1) è falsa, (2) è vera e (3) è falsa
Quesito n. 13 Data una funzione $f: [0,1] \cup [2,3] \to \mathbf{R}$ si consideri: (1) se f è continua allora esiste $x_0 \in [0,1]$ tale che $f(x_0) = \frac{1}{2}(f(0) + f(1))$ (2) se f è continua allora esiste x_0 nel dominio tale che $f(x_0) = \frac{1}{2}(f(0) + f(3))$ (3) se f è strettament monotona è invertibile. Si dica quale delle seguenti affermazioni è vera
A (1) è falsa, (2) è falsa e (3) è falsa B (1) è falsa, (2) è vera e (3) è vera C (1) è falsa, (2) è falsa e (3) è vera vera, (2) è falsa e (3) è vera E (1) è vera, (2) è vera e (3) è vera E (1) è vera, (2) è vera e (3) è falsa
vera, (2) e raisa e (3) e vera (2) e vera e (3) e vera (2) e vera e (3) e vera e (3) e raisa Quesito n. 14 Il valore minimo di a per cui la funzione $f(x) = (2)^{-2x+2} + 2(\frac{1}{2})^x + x \ln 2$ è crescente se e solo se $x \in (a, +\infty)$ è
A = 0 $B = 3$ $C = -1$ $D = -2$ $E = 1$ $E = 2$

Preparato con software sviluppato da Callegari Emanuele c/o dip. Matematica, Univ. Roma Tor Vergata Un ampio estratto della banca dati dei quesiti utilizzati è contenuto nel libro: QUESITI DI ANALISI MATEMATICA (II edizione), E. Callegari, ARACNE Editrice.

www.mat.uniroma2.it/~callegar

Quesito n. 15 Sia $f(x) = \arctan \frac{x+1}{2x-1}$. Allora $f'(x)$ è uguale a:
Quesito n. 16 Si considerino le seguenti tre affermazioni e si dica quale delle A-G è vera. (1) È data una funzione $f: \mathbf{R} \to \mathbf{R}$ derivabile monotona strettamente crescente tale che $\lim_{x\to+\infty} f(x) = +\infty$. Può aversi $\lim_{x\to+\infty} f'(x) = 0$. (2) È data una funzione $f: \mathbf{R} \to \mathbf{R}$ derivabile monotona strettamente crescente tale che $\lim_{x\to+\infty} f(x) = +\infty$. Può aversi $f'(x) = 0$ su di un insieme illimitato (3) È data una funzione $h: [a, b] \to \mathbf{R}$ derivabile per cui la derivata prima è una funzione strettamente crescente. Allora h ha la concavità rivolta verso l'alto \square (1) è falsa, (2) è falsa e (3) è vera \square (1) è vera, (2) è falsa e (3) è vera e (3) è vera e (3) è vera e (3) è vera
Compito n.14 Cognome:
n.1 n.2 n.3 n.4 n.5 n.6 n.7 n.8 n.9 n.10 n.11 n.12 n.13 n.14 n.15 n.16 A<
non scrivere sotto questa linea

Compito n.15 di Analisi Matematica 1, ing. Ambiente & Territorio, Energetica Meccanica, 02-12-05 **Quesito n. 1** Sia data la funzione $f(x) = ((2x)^x)^x$. Allora $\frac{f'(x)}{xf(x)}$ è uguale a: A = 2 B non esiste $C + \infty$ D 2 E $\frac{2}{3}$ F 1 Quesito n. 3 Sia $f(x) = \ln(3 + 5\sin x + 4\cos x)$. Allora f'(0) è eguale a $\frac{\text{A} \ _1 \quad \text{B} \ _{\frac{5}{6}} \quad \text{C} \ _{\frac{5}{7}} \quad \text{D} \ _{\frac{5}{3}} \quad \text{E} \ _{\frac{5}{4}} \quad \text{F} \ _{\frac{5}{9}}}{\text{Quesito n. 4}}$ La funzione $\sqrt{|\sin x(1-\sin x)|}$ ha $oxed{A}$ in 0 una cuspide e in $\frac{\pi}{2}$ un punto angoloso $oxed{B}$ in 0 un punto angoloso e in $\frac{\pi}{2}$ un punto in cui è derivabile $oxed{C}$ in 0 un punto in cui la funzione è derivabile e in $\frac{\pi}{2}$ una cuspide \boxed{D} in 0 un punto angoloso e in $\frac{\pi}{2}$ un punto angoloso \boxed{E} in 0 una cuspide e in Quesito n. 5 Sia $f(x) = \arctan \frac{x-2}{x+1}$. Allora f'(x) è uguale a: $f:[0,1]\to \mathbf{R}$ una funzione derivabile tale che x=0 è un minimo. Allora $f'(0^+)=0$ (la derivata destra in x=0 vale zero). sia $f:[0,1]\to \mathbf{R}$ una funzione derivabile tale che f'(x)>0 per ogni x. Ne segue che f(x) è invertibile (In tutti e tre i casi con f si intende una qualsiasi funzione avente le caratteristiche date). Allora A (1) è falsa, (2) è vera e (3) è vera e (3) è vera e (3) è falsa (2) è falsa (2) è falsa (2) è falsa (2) è falsa (3) è vera vera, (2) è falsa e (3) è vera $\stackrel{\textstyle oxdot{}}{}$ (1) è vera, (2) è vera e (3) è vera $\stackrel{\textstyle oxdot{}}{}$ (1) è vera, (2) è vera e (3) è falsa Quesito n. 7 Data una funzione $f: [0,1] \cup [2,3] \to \mathbf{R}$ si consideri: (1) se f è continua allora esiste x_0 appartenente al dominio della funzione per cui $f(x_0) = \frac{1}{2}(f(3) + f(0))$ (2) se $f'(x) \ge 0$ allora la funzione è crescente (3) se f è invertibile e continua è monotona. Si dica quale delle seguenti affermazioni è vera A (1) è falsa, (2) è falsa e (3) è falsa B (1) è falsa, (2) è falsa e (3) è vera C (1) è vera, (2) è falsa e (3) è falsa D (1) è vera, (2) è vera e (3) è vera E (1) è falsa, (2) è vera e (3) è vera E (1) è falsa, (2) è vera e (3) è falsa Quesito n. 8 Si considerino le seguenti tre affermazioni e si dica quale delle A–G è vera. (1) È data una funzione $f: \mathbf{R} \to \mathbf{R}$ che (2) È data una funzione $g: \mathbf{R} \to \mathbf{R}$ (3) È data una funzione $f: \mathbf{R} \to \mathbf{R}$ in $x = x_o$ ha un massimo. Allora la funzione è derivabile in $x = x_o$ e la derivata vale zero. derivabile che in x_o ha un flesso con derivata prima nulla. Allora $g''(x_o)$ esiste e vale zero convessa. Allora f' esiste ed è crescente A (1) è vera, (2) è falsa e (3) è vera B (1) è falsa, (2) è falsa e (3) è vera C (1) è falsa, (2) è vera e (3) è vera D (1) è $\frac{\text{falsa, (2) è falsa e (3) è falsa}}{\text{Quesito n. 9 La funzione } f(x) = \begin{cases} |\cos x| & -\pi \leq x \leq 0 \\ |-x^2 + x^3| & 0 < x \leq 2 \end{cases} \text{ ha}$ A esattamente cinque punti di estremo B esattamente due punti di estremo C esattamente quattro punti di estremo esattamente un punto di estremo 🗉 esattamente sei punti di estremo 🖺 esattamente tre punti di estremo Quesito n. 10 Si ordinino secondo l'infinitesimo crescente per $x \to 0^+$ le seguenti funzioni $f_1(x) = \frac{\sin x^2}{\tan(x^{\frac{3}{2}})}, f_2(x) = \frac{\ln(\cos x^2)}{-\sqrt{\cos x} + 1}$ $f_3(x) = \frac{\cos(\sin x) - 1}{\sin x}$, (l'ordinamento va eseguito nel modo seguente: g < f se $\lim_{x \to 0^+} \frac{f}{g} = 0$ ossia f = o(g)) $x \to +\infty$ si ha:

 $A \frac{1}{2} B \frac{13}{24} C \frac{2}{7} D \frac{-1}{2} E \frac{7}{5} F \frac{2}{3}$

Quesito n. 14 Data una funzione $f:[a,b] \to \mathbf{R}$ si consideri: (1) se f è continua è limitata (2) se f è monotona è invertibile (3) se f è continua e monotona è derivabile. Si dica quale delle seguenti affermazioni è vera
A (1) è vera, (2) è falsa e (3) è vera B (1) è falsa, (2) è falsa e (3) è vera C (1) è falsa, (2) è vera e (3) è vera D (1) è vera, (2) è vera e (3) è vera e (3) è vera e (3) è falsa
Quesito n. 15 Sia $f(x) = \ln^2(1+x) - x^2 + \alpha x^3 + \beta x^4$. Essa ha ordine di infinitesimo massimo per $x \to 0$ se e solo se
$\boxed{\textbf{A}} \ \alpha = \frac{7}{8}, \ \beta = 1 \boxed{\textbf{B}} \ \alpha = 1, \ \beta = -\frac{11}{12} \boxed{\textbf{C}} \ \alpha = 1, \ \beta = -2 \boxed{\textbf{D}} \ \alpha = \frac{1}{2}, \ \beta = -1 \boxed{\textbf{E}} \ \alpha = -\frac{11}{12}, \ \beta = 1 \boxed{\textbf{F}} \ \alpha = 1, \ \beta = \frac{1}{2}$
Quesito n. 16 Sia data una funzione $f: [0,3] \to \mathbf{R}$ continua e strettamente decrescente. Sia data inoltre la funzione $g: (1,2] \to \mathbf{R}$ tale che $g(x) = f(x)$ per $ogni \ x \in (1,2]$. Sia $G = \{y = g(x) : x \in (1,2]\}$ l'insieme dei valori assunti da $g(x)$. Si dica quale delle seguenti affermazioni è vera $\boxed{\mathbb{A}}$ G può essere illimitato $\boxed{\mathbb{B}}$ G non ammette estremo superiore nè inferiore $\boxed{\mathbb{C}}$ G ammette estremo inferiore ma non superiore $\boxed{\mathbb{C}}$ G ammette minimo ma non massimo $\boxed{\mathbb{E}}$ G ammette massimo e minimo
Compito n.15 Cognome: Nome:
n.1 n.2 n.3 n.4 n.5 n.6 n.7 n.8 n.9 n.10 n.11 n.12 n.13 n.14 n.15 n.16 A<
non scrivere sotto questa linea

Compito n.16 di Analisi Matematica 1, ing. Ambiente & Territorio, Energetica Meccanica, 02-12-05 Quesito n. 1 Sia data la funzione $f(x) = (x^x)^{3x}$. Allora $\frac{f'(x)}{3xf(x)}$ è uguale a: Quesito n. 2 Si ordinino secondo l'infinitesimo crescente per $x \to 0^+$ le seguenti funzioni $f_1(x) = xe^{-1/x}$, $f_2(x) = e^{-1/x^2}$, $f_3(x) = x^{1/x}$, (l'ordinamento va eseguito nel modo seguente: g < f se $\lim_{x \to 0^+} \frac{f}{g} = 0$ ossia f = o(g)) $\frac{\boxed{\textbf{A}}\ f_2 < f_1 < f_3 \qquad \boxed{\textbf{B}}\ f_1 < f_2 < f_3 \qquad \boxed{\textbf{C}}\ f_3 < f_1 < f_2 \qquad \boxed{\textbf{D}}\ f_1 < f_3 < f_2 \qquad \boxed{\textbf{E}}\ f_2 < f_3 < f_1 \qquad \boxed{\textbf{F}}\ f_3 < f_2 < f_1}$ $\boxed{\textbf{Quesito n. 3}}\ \ \text{Sia} \quad f(x) = \cos x - e^{-\frac{x^2}{2}} + \alpha x^4 + \beta - \cos x^3. \quad \text{Essa ha ordine di infinitesimo massimo per } x \to 0 \text{ se e solo se}}$ \boxed{A} in $\frac{-\pi}{2}$ la funzione è derivabile e 0 è un punto angoloso \boxed{B} in $\frac{-\pi}{2}$ la funzione è derivabile e 0 è un punto di cuspide \boxed{C} $\frac{-\pi}{2}$ un punto angoloso e 0 un punto angoloso $\boxed{D} = \frac{\pi}{2}$ un punto di cuspide e 0 un punto di cuspide $\boxed{E} = \frac{\pi}{2}$ una cuspide e 0 un punto angoloso $\frac{\mathbb{F}}{2}$ un punto angoloso in 0 e la funzione è derivabile Quesito n. 6 Sia $f(x) = \ln(8 + 5\sin x + \cos x)$. Allora f'(0) è eguale a $oxed{f A}$ G può essere illimitato $oxed{f B}$ G ammette estremo inferiore ma non superiore $oxed{f C}$ G ammette estremo superiore ma non inferiore D G non ammette massimo E G è limitato F G non ammette minimo Quesito n. 8 Il limite $\lim_{x\to 0} \frac{\ln(1-2x)(1+\sin 2x)-2x}{(e^x-1)^2}$ è uguale a: Al non più di quattro punti di estremo, un asintoto verticale, un asintoto orizzontale e nessun asintoto obliquo B non più di cinque punti di estremo, un asintoto verticale, un asintoto orizzontale ed uno obliquo C non più di tre punti di estremo, un asintoto verticale, nessun asintoto orizzontale ed un asintoto obliquo D almeno sei punti di estremo, un asintoto verticale, un asintoto orizzontale e nessun asintoto obliquo E esattamente quattro punti di estremo, un asintoto verticale, un asintoto orizzontale ed uno obliquo 🗜 non più di cinque punti di estremo, nessun asintoto verticale, un asintoto orizzontale, nessun asintoto obliquo Quesito n. 10 (1) Data una funzione $f:[a,b] \to \mathbf{R}$ derivabile in (a,b) sia $f'(x_o) = 0$, $x_o \in (a,b)$. Allora x_o è un punto di massimo oppure di minimo oppure di flesso a tangente orizzontale (2) sia $f:[0,1] \cup [2,3] \to \mathbf{R}$ una funzione derivabile tale che f'(x) > 0per ogni x. Allora f(x) è crescente sul suo dominio (3) sia $f:[0,1] \to \mathbf{R}$ una funzione derivabile. Allora $\frac{f(x)-f(0)}{x^{1/2}} = o(1)$ per $x o 0^+$ (In tutti e tre i casi con f si intende una qualsiasi funzione avente le caratteristiche date). Allora \boxed{A} (1) è vera, (2) è vera e (3) è vera e (3) è vera e (3) è falsa \boxed{C} (1) è vera, (2) è vera e (3) è falsa \boxed{D} (1) è falsa, (2) è vera e (3) è vera E (1) è vera, (2) è falsa e (3) è vera F (1) è falsa, (2) è falsa e (3) è vera **Quesito n. 11** Data una funzione $f:[0,1]\cup[2,3]\to\mathbf{R}$ si consideri: (1) se f è monotona è limitata (3) se f è monotona è continua. Si dica quale delle seguenti affermazioni è vera A (1) è falsa, (2) è falsa e (3) è vera B (1) è vera, (2) è vera e (3) è falsa C (1) è falsa, (2) è vera e (3) è falsa D (1) è Quesito n. 12 Data una funzione $f:[a,b)\to \mathbf{R}$ si consideri: (1) se f è continua è limitata (2) se f è continua è monotona (3) se f è derivabile è monotona. Si dica quale delle seguenti affermazioni è vera A (1) è vera, (2) è vera e (3) è falsa (1) è falsa, (2) è vera e (3) è vera (2) è falsa e (3) è vera (1) è vera, (2) è falsa e (3) è vera vera, (2) è vera e (3) è vera E (1) è falsa, (2) è vera e (3) è falsa F nessuna delle altre risposte è esatta Quesito n. 13 Si considerino le seguenti tre affermazioni e si dica quale delle A-G è vera. (1) È data una funzione $f:[a,b)\to \mathbf{R}$ (2) È data una funzione $g: \mathbf{R} \to \mathbf{R}$ tale che $\lim_{x \to +\infty} g(x) =$ derivabile tale che $\lim_{x\to b^-} f(x) = +\infty$. Allora $\lim_{x\to b^-} f'(x) = +\infty$. (3) È data una funzione $f:[a,b)\to \mathbf{R}$ tale che |f'(x)| è 0. Allora non è detto che sia definitivamente positiva oppure negativa illimitata. Allora f(x) è illimitata.

A (1) è falsa, (2) è vera e (3) è vera e (3) è vera e (3) è falsa (2) è vera e (3) è falsa (3) è falsa (4) è falsa (5) è vera e (6) è falsa (6) è falsa (7) è falsa (8) è f

Quesito n. 14 Date le funzioni f,g e h definite da $f(x)=2^{(x^2)}, g(x)=x^{(2^2)}$ e $h(x)=(2^x)^x$. Allora per $x\to +\infty$ si ha: $\begin{tabular}{l} \begin{tabular}{l} \begin{tabular} \begin{tabular}{l} \begin{tabular} \begin{tabular}{l} \begin{tabular}{l} \begin{tabular}{l}$

Analisi Matematica 1, ing. Ambiente & Territorio, Energetica, Meccanica, Secondo esonero 02-12-05 Compito n.17 di Analisi Matematica 1, ing. Ambiente & Territorio, Energetica Meccanica, 02-12-05 **Quesito n. 1** Sia $f(x) = e^{2x} - e^{-2x} + \alpha x + \beta x^3$. Essa ha ordine di infinitesimo massimo per $x \to 0$ se e solo se A esattamente sei punti di estremo, nessun asintoto verticale, nessun asintoto orizzontale B esattamente sei punti di estremo, un asintoto orizzontale C esattamente sei punti di estremo, un asintoto orizzontale un asintoto obliquo D esattamente cinque punti di estremo, un asintoto verticale, un asintoto orizzontale 🗉 esattamente quattro punti di estremo, nessun asintoto verticale, nessun asintoto orizzontale, un asintoto obliquo 🕒 esattamente quattro punti di estremo, nessun asintoto verticale, un asintoto $\overline{\mathbf{Quesito}}$ n. 3 Si considerino le seguenti tre affermazioni e si dica quale delle A-G è vera. (1) È data una funzione $f: \mathbf{R} \to \mathbf{R}$ derivabile monotona strettamente crescente tale che $\lim_{x\to+\infty} f(x) = +\infty$. Può aversi $\lim_{x\to+\infty} f'(x) = 0$. (2) È data una funzione $f: \mathbf{R} \to \mathbf{R}$ derivabile monotona strettamente crescente tale che $\lim_{x\to+\infty} f(x) = +\infty$. Può aversi f'(x) = 0 su di un insieme (3) È data una funzione $h: [a, b] \to \mathbf{R}$ derivabile per cui la derivata prima è una funzione strettamente crescente. Allora h ha la concavità rivolta verso l'alto \boxed{A} (1) è vera, (2) è vera e (3) è vera \boxed{B} (1) è falsa, (2) è vera e (3) è falsa \boxed{C} (1) è vera, (2) è falsa e (3) è vera \boxed{D} (1) è Quesito n. 4 Si ordinino secondo l'infinitesimo crescente per $x \to 0^+$ le seguenti funzioni $f_1(x) = \frac{e^{\sin x^3} - 1}{\cos x - 1}$, $f_2(x) = (1 + x)^{\frac{-1}{x^2}}$, $f_3(x) = \frac{1}{\ln x} (1+x^2)^{\frac{1}{x}}$, (l'ordinamento va eseguito nel modo seguente: g < f se $\lim_{x\to 0^+} \frac{f}{g} = 0$ ossia f = o(g)) allora f^{-1} è continua (3) se f è continua e invertibile è monotona. Si dica quale delle seguenti affermazioni è vera A (1) è vera, (2) è vera e (3) è vera B (1) è falsa, (2) è falsa e (3) è vera C (1) è vera, (2) è vera e (3) è falsa D (1) è vera, (2) è falsa e (3) è vera $\stackrel{(2)}{=}$ (1) è falsa, (2) è vera e (3) è falsa $\stackrel{(3)}{=}$ (1) è falsa, (2) è vera e (3) è vera $\stackrel{(4)}{=}$ Quesito n. 6 Si calcoli il seguente limite $\lim_{x\to 0} \frac{e^{-x^2}\cos x - e^{x^2} + \frac{5}{2}x^2}{x\sin^3 x}$ $A_{\frac{7}{5}}$ $B_{\frac{2}{7}}$ $C_{\frac{-1}{2}}$ $D_{\frac{1}{2}}$ $E_{\frac{13}{24}}$ $F_{\frac{2}{3}}$ Quesito n. 7 Sia data una funzione $f:[0,3] \to \mathbf{R}$ continua e strettamente crescente. Sia data inoltre la funzione $g:[1,2) \to \mathbf{R}$ tale che g(x)=f(x) per ogni $x\in[1,2)$. Sia $G=\{y=g(x):x\in[1,2)\}$ l'insieme dei valori assunti da g(x). Si dica quale delle seguenti affermazioni è vera A G ammette estremo inferiore ma non superiore B G ammette minimo ma non massimo C G non ammette estremo superiore nè inferiore \square G non ammette minimo \square G può essere illimitato \square G ammette massimo **Quesito n. 8** Sia data la funzione $f(x) = ((2x)^x)^x$. Allora $\frac{f'(x)}{xf(x)}$ è uguale a: A $2 \ln x + 1$ B $3 \ln (2x) + 1$ C $4 \ln x + 1$ D $3 \ln x + 1$ E $2 \ln (3x) + 1$ F $2 \ln (2x) + 1$ Quesito n. 9 (1) sia $f: [0,1] \to \mathbf{R}$ una funzione derivabile tale che f'(1/2) = 0. Allora $\frac{f(x) - f(\frac{1}{2})}{\sqrt{x - \frac{1}{2}}} = o(1)$ per $x \to \frac{1}{2}^+$ $f: [0,1] \to \mathbf{R}$ una funzione derivabile tale che x = 0 è un minimo. Allora $f'(0^+) = 0$ (la derivada destra in x = 0 vale zero). sia $f:[0,1] \to \mathbf{R}$ una funzione derivabile tale che f'(x) > 0 per ogni x. Ne segue che f(x) è invertibile (In tutti e tre i casi con f si intende una qualsiasi funzione avente le caratteristiche date). Allora A (1) è falsa, (2) è falsa e (3) è vera B (1) è vera, (2) è vera e (3) è vera C (1) è falsa, (2) è vera e (3) è vera D (1) è vera, (2) è falsa e (3) è vera E (1) è falsa, (2) è vera e (3) è falsa F (1) è vera, (2) è vera e (3) è falsa Quesito n. 10 Sia $f(x) = \ln(7 + 9\sin x + 5\cos x)$. Allora f'(0) è eguale a \boxed{A} in 0 una cuspide e in $\frac{\pi}{2}$ un punto angoloso \boxed{B} in $\frac{\pi}{2}$ un punto in cui la funzione è derivabile \boxed{C} in 0 un punto angoloso e in $\frac{\pi}{2}$ un punto angoloso \boxed{D} in 0 una cuspide e in $\frac{\pi}{2}$ una cuspide \boxed{E} in 0 un punto in cui la funzione è derivabile e in $\frac{\pi}{2}$ una cuspide F in 0 un punto angoloso e in $\frac{\pi}{2}$ un punto in cui è derivabile

 $A = \frac{2}{3}$ $B = \frac{1}{2}$ $C = \frac{3}{4}$ $D + \infty$ E = 2 E = 1 non esiste

Quesito n. 12 Il valore minimo di a per cui la funzione $f(x) = (2)^{-2x+1} + 3(\frac{1}{2})^x + x \ln 2$ è crescente se e solo se $x \in (a, +\infty)$ è

Quesito n. 14 Data una funzione $f: [a, b] \to \mathbf{R}$ si consideri: (1) se f è monotona è limitata (2) se f è monotona è invertibile (3) se f è derivabile e invertibile allora $f' \neq 0$ per ogni x. Si dica quale delle seguenti affermazioni è vera \square (1) è vera, (2) è falsa e (3) è falsa \square (1) è vera, (2) è vera e (3) è vera e (4) è v

Compito n.18 di Analisi Matematica 1, ing. Ambiente & Territorio, Energetica Meccanica, 02-12-05 Quesito n. 1 La funzione $f(x) = \begin{cases} x^2 e^{-x^2} & x \le 0 \\ \left| \frac{5}{r} + x - 6 \right| & x > 0 \end{cases}$ ha Al almeno sei punti di estremo, un asintoto verticale, un asintoto orizzontale e nessun asintoto obliquo B esattamente quattro punti di estremo, un asintoto verticale, un asintoto orizzontale ed uno obliquo 🔼 non più di cinque punti di estremo, un asintoto verticale, un asintoto orizzontale ed uno obliquo D non più di cinque punti di estremo, nessun asintoto verticale, un asintoto orizzontale, nessun asintoto obliquo E non più di tre punti di estremo, un asintoto verticale, nessun asintoto orizzontale ed un asintoto obliquo 🗜 non più di quattro punti di estremo, un asintoto verticale, un asintoto orizzontale e nessun asintoto obliquo Quesito n. 2 Si calcoli il seguente limite $\lim_{x\to 0} \frac{\sin x - x \cos x}{x(e^{2x} - e^x - x)}$ $A_{\frac{1}{2}} B_{-\frac{2}{9}} C_0 D_{\frac{-1}{2}} E_{\frac{2}{5}} F_{\frac{2}{9}}$ Quesito n. 3 Data una funzione $f:[0,1)\cup[2,3]\to\mathbf{R}$ sia $g(x):[2,3]\to\mathbf{R}$ la f ristretta all'intervallo [2,3] ($g(x)=f|_{[2,3]}$). Si consideri: (1) se f è continua allora esiste (finito o infinito) $\lim_{x\to 1^-} f(x)$ (2) se f è continua ed invertibile allora g(x) è monotona (3) se f è strettamente monotona è invertibile . Si dica quale delle seguenti affermazioni è vera A (1) è falsa, (2) è falsa e (3) è vera Quesito n. 4 Date le funzioni f, g e h definite da $f(x) = \ln(\ln x)$, $g(x) = \ln^2 x$ e $h(x) = \sqrt{\ln x}$. Allora per $x \to +\infty$ si ha: $\boxed{\textbf{A}} \ g(x) = o(f(x)) \ \textbf{e} \ f(x) = o(h(x)) \quad \boxed{\textbf{B}} \ h(x) = o(f(x)) \ \textbf{e} \ f(x) = o(g(x)) \quad \boxed{\textbf{C}} \ f(x) = o(h(x)) \ \textbf{e} \ h(x) = o(g(x)) \quad \boxed{\textbf{D}} \ g(x) = o(h(x))$ $|\underline{\mathbf{A}}|$ in $-\pi$ una cuspide e in $\frac{-\pi}{2}$ un punto angoloso $|\underline{\mathbf{B}}|$ in $\frac{-\pi}{2}$ un punto in cui la funzione è derivabile $|\underline{\mathbf{C}}|$ in $\frac{-\pi}{2}$ una cuspide $|\underline{\mathbf{D}}|$ in $-\pi$ un punto angoloso e in $\frac{-\pi}{2}$ un punto angoloso $\boxed{\text{E}}$ in $-\pi$ una cuspide e in $\frac{-\pi}{2}$ una cuspide $\boxed{\text{F}}$ in $-\pi$ un punto angoloso Quesito n. 6 (1) sia $f:[a,b] \to \mathbf{R}$ una funzione derivabile tale che $x_o \in [a,b]$ è un punto di minimo. Allora esiste un intorno di x_o tale che $f'(x_o)(x-x_o) \ge 0$ per ogni x appartenente all'intorno (2) sia $f:[a,b] \to \mathbf{R}$ una funzione derivabile tale che $x_o \in (a,b)$ è un punto di massimo. Allora $\exists \ \delta > 0: \ x \in (x_o - \delta, x_o + \delta) \Rightarrow f'(x_o)(x-x_o) < 0$ (3) sia $f:[a,b] \to \mathbf{R}$ una funzione derivabile tale che $x_o \in (a,b)$ è un punto di minimo e $f'(x_o) = 0$. Allora $f''(x_o) > 0$ (3) sia $f:[a,b] \to \mathbf{R}$ una funzione derivabile tale che $x_o \in (a,b)$ è un punto di minimo e $f'(x_o) = 0$. Allora $f''(x_o) > 0$ (si assume che in x_o la funzione ha un minimo se esiste un intorno $(x_o - \delta, x_o + \delta)$ tale che $f(x) \ge f(x_o)$ per $x \in (x_o - \delta, x_o + \delta)$ e viceversa per il massimo)) (In tutti e tre i casi con f si intende una qualsiasi funzione avente le caratteristiche date). Allora | A | (1) è vera, (2) è falsa e (3) è vera | B | (1) è vera, (2) è vera e (3) è vera | C | (1) è vera, (2) è falsa e (3) è falsa | D | (1) è falsa, (2) è vera e (3) è falsa (1) è falsa, (2) è vera e (3) è vera (1) è vera, (2) è vera e (3) è falsa Quesito n. 7 Data una funzione $f:[a,b]\to \mathbf{R}$ si consideri: (1) se f è continua è limitata (3) se f è continua e monotona è derivabile. Si dica quale delle seguenti affermazioni è vera A (1) è falsa, (2) è vera e (3) è vera (2) è vera e (3) è falsa (1) è vera, (2) è falsa (3) è vera (1) è vera, (2) è falsa (3) è vera falsa, (2) è falsa e (3) è vera $\stackrel{\textstyle oxed{E}}{}$ (1) è vera, (2) è falsa e (3) è falsa $\stackrel{\textstyle oxed{E}}{}$ (1) è vera, (2) è vera e (3) è vera $\stackrel{\textstyle oxed{Q}}{}$ Quesito n. 8 Il valore minimo di a per cui la funzione $f(x)=(2)^{-2x+2}-2(\frac{1}{2})^x+x\ln 2$ è crescente se e solo se $x\in(a,+\infty)$ è $oxed{A} a = 0 \quad oxed{B} a = 3 \quad oxed{C} a = 1 \quad oxed{D} a = -1 \quad oxed{E} a = -2 \quad oxed{F} a = 2$ Quesito n. 9 Si ordinino secondo l'infinito crescente per $x \to +\infty$ le seguenti funzioni $f_1(x) = e^{\sqrt{x}}$, $f_2(x) = e^{\ln^2 x}$, $f_3(x) = x^{\sqrt{x}}$, (l'ordinamento va eseguito nel modo seguente: g < f se $\lim_{x \to +\infty} \frac{f}{g} = +\infty$) $A 3 \ln (2x) + 1$ $B 2 \ln (2x) + 1$ $C 2 \ln x + 1$ $D 2 \ln (3x) + 1$ $E 3 \ln x + 1$ $F 4 \ln x + 1$ Quesito n. 11 Sia data una funzione $f:[0,3] \to \mathbf{R}$ continua e strettamente crescente. Sia data inoltre la funzione $g:(1,2) \to \mathbf{R}$ tale che g(x) = f(x) per ogni $x \in (1,2)$. Sia $G = \{y = g(x) : x \in (1,2)\}$ l'insieme dei valori assunti da g(x). Si dica quale delle seguenti $oxed{A}$ G ammette massimo $oxed{B}$ G ammette estremo inferiore ma non superiore $oxed{C}$ G ammette estremo superiore $oxed{D}$ Gammette estremo superiore ma non inferiore $\stackrel{\text{E}}{=} G$ può essere illimitato $\stackrel{\text{F}}{=} G$ ammette minimo Quesito n. 12 Si considerino le seguenti tre affermazioni e si dica quale delle A–G è vera. (1) È data una funzione $f:[0,3] \to \mathbf{R}$, derivabile con derivata continua nel suo dominio, che vale zero per $1 \le x \le 2$. Allora f(x) è costante su [0,3]. funzione $g: \mathbf{R} \to \mathbf{R}$ derivabile due volte, se la funzione è strettamente convessa in \mathbf{R} allora $g''(x) \geq 0$ per ogni x(3) È data una funzione $h:[a,b)\to \mathbf{R}$ tale che $\lim_{x\to b^-}h'(x)=+\infty$. Allora $\lim_{x\to b^-}h(x)=+\infty$. A (1) è falsa, (2) è vera e (3) è vera
(1) è falsa, (2) è falsa e (3) è vera
(2) è vera, (2) è vera e (3) è falsa
(1) è falsa, (2) è falsa e (3) è vera
(2) è vera e (3) è falsa
(3) è vera
(4) è vera, (2) è vera e (3) è falsa

Quesito n. 13 Sia $f(x) = \ln(1+x) - \sin x + \alpha x^2 + \beta x^3$. Essa ha ordine di infinitesimo massimo per $x \to 0$ se e solo se $\boxed{\textbf{A}} \ \alpha = \frac{1}{2}, \ \beta = -\frac{1}{2} \quad \boxed{\textbf{B}} \ \alpha = \frac{1}{2}, \ \beta = -1 \quad \boxed{\textbf{C}} \ \alpha = \frac{1}{2}, \ \beta = 1 \quad \boxed{\textbf{D}} \ \alpha = \frac{1}{2}, \ \beta = \frac{1}{2} \quad \boxed{\textbf{E}} \ \alpha = -\frac{1}{2}, \ \beta = \frac{1}{2} \quad \boxed{\textbf{F}} \ \alpha = 1, \ \beta = \frac{1}{2}$

Quesito n. 14 Il limite $\lim_{x\to 0} \frac{e^x \ln(1+x) - xe^{\frac{1}{2}x}}{3x^4 + (1-\cos x)}$ è uguale a:
$A - 1$ $B + \infty$ $C - 2$ D_0 E_1 F non esiste
Quesito n. 15 Sia $f(x) = \arctan \frac{x+1}{2x+1}$. Allora $f'(x)$ è uguale a:
$ \boxed{ \textbf{A} } \frac{3}{2x^2-2x+5} \boxed{ \textbf{B} } \frac{3}{5x^2-2x+2} \boxed{ \textbf{C} } \frac{1}{5x^2+6x+2} \boxed{ \textbf{D} } -\frac{1}{5x^2+6x+2} \boxed{ \textbf{E} } -\frac{3}{5x^2-2x+2} \boxed{ \textbf{F} } -\frac{3}{2x^2-2x+5} $
Quesito n. 16 Sia $f(x) = \ln(3 + 5\sin x + 4\cos x)$. Allora $f'(0)$ è eguale a
$\boxed{A} \ \frac{5}{9} \boxed{B} \ \frac{5}{4} \boxed{C} \ \frac{5}{6} \boxed{D} \ _1 \boxed{E} \ \frac{5}{7} \boxed{F} \ \frac{5}{3}$
Compito n.18 Cognome: Nome:
n.1 n.2 n.3 n.4 n.5 n.6 n.7 n.8 n.9 n.10 n.11 n.12 n.13 n.14 n.15 n.16 A<

Analisi Matematica 1, ing. Ambiente & Territorio, Energetica, Meccanica, Secondo esonero 02-12-05 Compito n.19 di Analisi Matematica 1, ing. Ambiente & Territorio, Energetica Meccanica, 02-12-05 Quesito n. 1 La funzione $\sqrt{\frac{|x^2(x-1)|}{|x+1|}}$ ha A in 1 un punto angoloso e in 0 la funzione è derivabile B in 1 un punto angoloso e in 0 un punto angoloso C in 1 una cuspide e in 0 una cuspide D in 1 la funzione è derivabile e in 0 una cuspide E in 1 una cuspide e in 0 un punto angoloso F in 1 una cuspide e in 0 la funzione è derivabile Quesito n. 2 Si considerino le seguenti tre affermazioni e si dica quale delle A-G è vera. (1) È data una funzione $f: \mathbf{R} \to \mathbf{R}$ monotona strettamente crescente e derivabile. Allora $\lim_{x\to +\infty} f'(x) = +\infty$ (2) È data una funzione $g: \mathbf{R} \to \mathbf{R}$ tale che $\lim_{x\to +\infty} g(x) = 0$. Allora si ha $\lim_{x\to +\infty} g'(x) = 0$. (3) È data una funzione $g: \mathbf{R} \to \mathbf{R}$ tale che $\lim_{x\to +\infty} g(x) = 0$. Allora se esiste $\lim_{x\to+\infty} g'(x)$ esso è 0. A (1) è falsa, (2) è falsa e (3) è vera B (1) è falsa, (2) è vera e (3) è vera C (1) è falsa, (2) è vera e (3) è falsa D (1) è falsa, (2) è falsa e (3) è falsa E (1) è vera, (2) è vera e (3) è falsa F (1) è vera, (2) è falsa e (3) è vera Quesito n. 3 Data una funzione $f:[a,b] \to \mathbf{R}$ si consideri: (1) se f è continua allora esiste $x_0 \in [a,b]$ tale che $f(x_0) = \frac{1}{2}(f(a) + f(b))$ (2) se f è invertibile è monotona (3) se f è derivabile è monotona. Si dica quale delle seguenti affermazioni è vera [A] (1) è vera, (2) è vera e (3) è vera [B] (1) è vera, (2) è falsa e (3) è falsa [C] (1) è vera, (2) è falsa e (3) è vera [D] (1) è falsa, (2) è vera e (3) è vera (1) è vera, (2) è vera e (3) è falsa (1) è falsa, (2) è falsa e (3) è vera Quesito n. 4 Si ordinino secondo l'infinitesimo crescente per $x \to 0^+$ le seguenti funzioni $f_1(x) = \frac{e^{\sin x^3} - 1}{\cos x - 1}$, $f_2(x) = (1+x)^{\frac{-1}{x^2}}$, $f_3(x) = \frac{1}{\ln x} (1+x^2)^{\frac{1}{x}}$, (l'ordinamento va eseguito nel modo seguente: g < f se $\lim_{x\to 0^+} \frac{f}{g} = 0$ ossia f = o(g)) $A = 4 \ln x + 1$ $B = 2 \ln x + 1$ $C = 2 \ln (2x) + 1$ $D = 3 \ln x + 1$ $E = 2 \ln (3x) + 1$ $E = 3 \ln (2x) + 1$ **Quesito n. 8** Data una funzione $f:[0,1] \cup [2,3] \to \mathbf{R}$ si consideri: (1) se f è monotona è limitata (2) se f è continua è limitata (3) se f è monotona è continua. Si dica quale delle seguenti affermazioni è vera A (1) è vera, (2) è falsa e (3) è vera (1) è vera, (2) è vera e (3) è vera (2) è vera e (3) è vera (2) è falsa (2) è vera e (3) è falsa (2) è vera e (3) è falsa (3) è vera falsa, (2) è falsa e (3) è vera E (1) è vera, (2) è vera e (3) è falsa F (1) è falsa, (2) è vera e (3) è vera **Quesito n. 9** Si calcoli il seguente limite $\lim_{x \to +\infty} \frac{e^{x^2} \sin x - x}{\tan x - \sin x}$ $A = \frac{1}{2}$ $B = \frac{5}{2}$ $C = \frac{2}{2}e$ $D = \frac{1}{4}$ $E = -\infty$ E = 0Quesito n. 10 (1) Data una funzione $f:[a,b] \to \mathbf{R}$ derivabile in (a,b) sia $f'(x_o) = 0$, $x_o \in (a,b)$. Allora x_o è un punto di massimo oppure di minimo oppure di flesso a tangente orizzontale (2) sia $f:[0,1]\cup[2,3]\to\mathbf{R}$ una funzione derivabile tale che f'(x)>0(3) sia $f:[0,1] \to \mathbf{R}$ una funzione derivabile. Allora $\frac{f(x)-f(0)}{x^{1/2}} = o(1)$ per per ogni x. Allora f(x) è crescente sul suo dominio $x o 0^+$ (In tutti e tre i casi con f si intende una qualsiasi funzione avente le caratteristiche date). Allora A (1) è falsa, (2) è falsa e (3) è vera B (1) è vera, (2) è vera e (3) è falsa C (1) è falsa, (2) è vera e (3) è falsa D (1) è $\frac{\text{vera, (2) è vera e (3) è vera}}{\text{Quesito n. 11 La funzione } f(x) = \begin{cases} |x^2 + x| & -2 \le x \le 0 \\ \left|\frac{1}{x^2} - \frac{1}{x}\right| & x > 0 \end{cases}}$ A esattamente quattro punti di estremo, un asintoto verticale, un asintoto orizzontale, un asintoto obliquo punti di estremo, un asintoto verticale, un asintoto orizzontale ed uno obliquo 🖸 non più di sei punti di estremo, un asintoto verticale, nessun asintoto orizzontale e un asintoto obliquo D esattamente cinque punti di estremo, un asintoto verticale, un asintoto orizzontale, nessun asintoto obliquo E non più di quattro punti di estremo, nessun asintoto verticale, nessun asintoto orizzontale, un asintoto obliquo 🕒 non più di sei punti di estremo, un asintoto verticale, un asintoto orizzontale, nessun asintoto Quesito n. 12 Sia $f(x) = \ln(7 + 9\sin x + 5\cos x)$. Allora f'(0) è eguale a

 $e \ g(x) = o(f(x))$ $E \ f(x) = o(g(x)) \ e \ g(x) = o(h(x))$ $E \ f(x) = o(h(x)) \ e \ h(x) = o(g(x))$

Quesito n. 14 Sia $f(x) = \arctan \frac{x-2}{x+1}$. Allora $f'(x)$ è uguale a:
$ \boxed{ \textbf{A} \; \frac{3}{5x^2-2x+2} \boxed{ \textbf{B} \; -\frac{3}{2x^2-2x+5} \boxed{ \textbf{C} \; -\frac{1}{5x^2+6x+2} \boxed{ \textbf{D} \; -\frac{3}{5x^2-2x+2} \boxed{ \textbf{E} \; \frac{1}{5x^2+6x+2} \boxed{ \textbf{F} \; \frac{3}{2x^2-2x+5} } } } $
Quesito n. 15 Sia data una funzione $f:[0,3] \to \mathbf{R}$ continua e strettamente crescente. Sia data inoltre la funzione $g:[1,2) \to \mathbf{R}$ tale che $g(x) = f(x)$ per ogni $x \in [1,2)$. Sia $G = \{y = g(x) : x \in [1,2)\}$ l'insieme dei valori assunti da $g(x)$. Si dica quale delle seguenti affermazioni è vera
$oxed{\mathbb{A}}$ G ammette minimo ma non massimo nè inferiore $oxed{\mathbb{D}}$ G non ammette estremo inferiore ma non superiore $oxed{\mathbb{C}}$ G non ammette estremo superiore nè inferiore $oxed{\mathbb{D}}$ G non ammette minimo $oxed{\mathbb{E}}$ G può essere illimitato $oxed{\mathbb{F}}$ G ammette massimo
Quesito n. 16 Il limite $\lim_{x\to 0} \frac{\ln(1+2x)(1-\sin 2x)-2x}{x^2+\sin x^2}$ è uguale a:
$f A$ 4 $f B$ 0 $f C$ 2 $f D$ non esiste $f E$ -3 $f F$ $+\infty$
Compito n.19 Cognome: Nome:
n.1 n.2 n.3 n.4 n.5 n.6 n.7 n.8 n.9 n.10 n.11 n.12 n.13 n.14 n.15 n.16 A <t< td=""></t<>
non scrivere sotto questa linea Totale:

Compito n.20 di Analisi Matematica 1, ing. Ambiente& Territorio, Energetica Meccanica, 02-12-05
Quesito n. 1 Sia $f(x) = \arctan \frac{x+1}{2x-1}$. Allora $f'(x)$ è uguale a:
Quesito n. 2 Si calcoli il seguente limite $\lim_{x\to 0} \frac{x^2 \cos^2 x - e^{x^2} + 1}{x^2 \sin^2 x}$
$A = \frac{1}{4} B + \infty C = \frac{3}{2} D_0 E = \frac{1}{2} E_{\frac{1}{2}}$
Quesito n. 3 Il limite $\lim_{x\to 0} \frac{\ln(1+2x)(1-\sin x)-2x}{\sin^2 x + \sin x^2}$ è uguale a:
$A = \frac{2}{3}$ B non esiste $C = 2$ D 1 E $+\infty$ F -2
Quesito n. 4 Il valore minimo di a per cui la funzione $f(x)=(2)^{-2x+1}+3(\frac{1}{2})^x+x\ln 2$ è crescente se e solo se $x\in(a,+\infty)$ è
$A = 0$ $B = 2$ $C = -2$ $D = -1$ $E = 1$ $E = 3$ Quesito n. 5 La funzione $\sqrt{ \cos x(1 - \cos x) }$ ha
Quesito n. 5 La funzione $\sqrt{ \cos x(1-\cos x) }$ ha
$oxed{A}$ in $\frac{-\pi}{2}$ la funzione è derivabile e 0 è un punto di cuspide $oxed{B} = \frac{\pi}{2}$ un punto di cuspide e 0 un punto di cuspide e 0 un punto angoloso $oxed{D}$ in $\frac{-\pi}{2}$ la funzione è derivabile e 0 è un punto angoloso $oxed{E} = \frac{\pi}{2}$ un punto angoloso e 0 un punto angoloso $oxed{E} = \frac{\pi}{2}$ un punto angoloso in 0 e la funzione è derivabile
Quesito n. 6 Si considerino le seguenti tre affermazioni e si dica quale delle A-G è vera. (1) È data una funzione $f: \mathbf{R} \to \mathbf{R}$ ch in $x = x_o$ ha un massimo. Allora la funzione è derivabile in $x = x_o$ e la derivata vale zero. (2) È data una funzione $g: \mathbf{R} \to \mathbf{R}$ ch derivabile che in x_o ha un flesso con derivata prima nulla. Allora $g''(x_o)$ esiste e vale zero convessa. Allora f' esiste ed è crescente
A (1) è falsa, (2) è falsa e (3) è vera B (1) è vera, (2) è falsa e (3) è vera C (1) è vera, (2) è vera e (3) è falsa D (1) falsa, (2) è vera e (3) è falsa E (1) è falsa, (2) è vera e (3) è vera E (1) è falsa, (2) è falsa e (3) è falsa
Quesito n. 7 Sia $f(x) = \ln^2(1+x) - x^2 + \alpha x^3 + \beta x^4$. Essa ha ordine di infinitesimo massimo per $x \to 0$ se e solo se
$\boxed{\underline{\mathbf{A}}\ \alpha = \frac{7}{8},\ \beta = 1 \boxed{\underline{\mathbf{B}}\ \alpha = 1,\ \beta = \frac{1}{2} \boxed{\underline{\mathbf{C}}\ \alpha = 1,\ \beta = -2 \boxed{\underline{\mathbf{D}}\ \alpha = \frac{1}{2},\ \beta = -1 \boxed{\underline{\mathbf{E}}\ \alpha = -\frac{11}{12},\ \beta = 1 \boxed{\underline{\mathbf{F}}\ \alpha = 1,\ \beta = -\frac{11}{12}}}$
Quesito n. 8 La funzione $f(x) = \left\{ egin{array}{ll} \cos x & -\pi \leq x \leq 0 \\ -x^2+x^3 & 0 < x \leq 2 \end{array} ight.$ ha
A esattamente cinque punti di estremo B esattamente un punto di estremo C esattamente quattro punti di estremo esattamente sei punti di estremo E esattamente tre punti di estremo F esattamente due punti di estremo
Quesito n. 9 Data una funzione $f:[a,b)\to \mathbf{R}$ si consideri: (1) se f è continua è limitata (2) se f è continua è monotona. Si dica quale delle seguenti affermazioni è vera
A (1) è vera, (2) è vera e (3) è falsa B (1) è falsa, (2) è vera e (3) è falsa C (1) è vera, (2) è vera e (3) è vera delle altre risposte è esatta E (1) è falsa, (2) è vera e (3) è vera E (1) è vera, (2) è falsa e (3) è vera
Quesito n. 10 Data una funzione $f:[0,1] \cup [2,3] \to \mathbf{R}$ si consideri: (1) se f è continua è limitata (2) se f è continua e invertibile allora f^{-1} è continua (3) se f è continua e invertibile è monotona. Si dica quale delle seguenti affermazioni è vera
A (1) è vera, (2) è vera e (3) è vera B (1) è falsa, (2) è vera e (3) è falsa C (1) è vera, (2) è falsa e (3) è vera vera, (2) è vera e (3) è falsa E (1) è falsa, (2) è vera e (3) è vera E (1) è falsa, (2) è falsa e (3) è vera
vera, (2) e vera e (3) e raisa (2) e vera e (3) e vera e (3) e vera (3) e vera
tale che $g(x) = f(x)$ per ogni $x \in [1, 2]$. Sia $G = \{y = g(x) : x \in [1, 2]\}$ l'insieme dei valori assunti da $g(x)$. Si dica quale delle seguent affermazioni è vera
A G può essere illimitato B G ammette estremo inferiore ma non superiore C G ammette estremo superiore ma non inferior D G non ammette massimo E G è limitato F G non ammette minimo Quesito n. 12 (1) Data una funzione $f: [a,b] \to \mathbf{R}$ derivabile in $(a,b), x_o \in (a,b)$ è un punto di massimo oppure di minimo; allorations $f: [a,b] \to \mathbf{R}$ derivabile in $f: [a,b] \to \mathbf{R}$
$f'(x_o) = 0$. (2) sia $f: [0,1] \cup [2,3] \to \mathbf{R}$ una funzione derivabile tale che $f'(x) > 0$ per ogni x . Allora $f(x)$ è crescente sul sudominio (3) sia $f: [0,1] \cup [2,3] \to \mathbf{R}$ una funzione derivabile tale che $f'(x) > 0$ per ogni x . Ne segue che $f(x)$ è invertibile (In tutti e tre i casi con f si intende una qualsiasi funzione avente le caratteristiche date). Allora
A (1) è vera, (2) è falsa e (3) è falsa B (1) è falsa, (2) è vera e (3) è falsa C (1) è falsa, (2) è vera e (3) è vera D (1) falsa, (2) è falsa e (3) è vera E (1) è vera, (2) è falsa e (3) è vera B (1) è vera, (2) è vera e (3) è vera
Quesito n. 13 Si ordinino secondo l'infinitesimo crescente per $x \to 0^+$ le seguenti funzioni $f_1(x) = \frac{\sin x^2}{\tan(x^{\frac{3}{2}})}, f_2(x) = \frac{\ln(\cos x^2)}{-\sqrt{\cos x} + 1}$
$f_3(x) = \frac{\cos(\sin x) - 1}{\sin x}$, (l'ordinamento va eseguito nel modo seguente: $g < f$ se $\lim_{x \to 0^+} \frac{f}{g} = 0$ ossia $f = o(g)$)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Compito n.21 di Analisi Matematica 1, ing. Ambiente & Territorio, Energetica Meccanica, 02-12-05

Quesito n. 1 Si ordinino secondo l'infinitesimo crescente per $x \to 0^+$ le seguenti funzioni $f_1(x) = xe^{-1/x}$, $f_2(x) = e^{-1/x^2}$, $f_3(x) = x^{1/x}$, (l'ordinamento va eseguito nel modo seguente: g < f se $\lim_{x \to 0^+} \frac{f}{g} = 0$ ossia f = o(g)) A $f_3 < f_1 < f_2$ B $f_3 < f_2 < f_1$ C $f_2 < f_1 < f_3$ D $f_1 < f_2 < f_3$ E $f_1 < f_3 < f_2$ F $f_2 < f_3 < f_1$ Quesito n. 2 Il limite $\lim_{x \to 0} \frac{\ln(1 + 2x)(1 - \sin x) - 2x}{\sin^2 x + \sin x^2}$ è uguale a: A non esiste B 1 C -2 D $+\infty$ E $\frac{2}{3}$ F 2 Quesito n. 3 Sia $f(x) = \ln(3 + 5\sin x + 4\cos x)$. Allora f'(0) è eguale a Quesito n. 4 Data una funzione $f: [a, b] \to \mathbf{R}$ si consideri: (1) se f è monotona è limitata (2) se (3) se f è derivabile e invertibile allora $f' \neq 0$ per ogni x. Si dica quale delle seguenti affermazioni è vera (2) se f è monotona è invertibile A (1) è falsa, (2) è vera e (3) è vera (2) è vera (2) è vera (2) è vera (3) è vera (2) è falsa e (3) è vera (1) è **Quesito n. 5** Data una funzione $f:[0,1] \cup [2,3] \to \mathbf{R}$ si consideri: (1) se f è continua allora esiste x_0 appartenente al dominio della (2) se $f'(x) \ge 0$ allora la funzione è crescente funzione per cui $f(x_0) = \frac{1}{2}(f(3) + f(0))$ (3) se f è invertibile e continua è monotona. Si dica quale delle seguenti affermazioni è vera A (1) è falsa, (2) è vera e (3) è vera e (3) è vera e (3) è vera e (3) è falsa (2) è vera e (3) è vera e (4) falsa, (2) è falsa e (3) è vera (1) è falsa, (2) è falsa e (3) è falsa (1) è vera, (2) è falsa e (3) è falsa Quesito n. 6 Date le funzioni f, g e h definite da $f(x) = \ln(1+x^x)$, $g(x) = \ln(1+x^2)$ e $h(x) = \sqrt{\ln(1+e^{x^3})}$. Allora per Quesito n. 7 Sia data una funzione $f:[0,3] \to \mathbf{R}$ continua e strettamente crescente. Sia data inoltre la funzione $g:(1,2] \to \mathbf{R}$ tale che g(x) = f(x) per ogni $x \in (1,2]$. Sia $G = \{y = g(x) : x \in (1,2]\}$ l'insieme dei valori assunti da g(x). Si dica quale delle seguenti $oxed{A}$ G ammette massimo e minimo $oxed{B}$ G non ammette estremo superiore nè inferiore $oxed{C}$ G ammette estremo inferiore ma non superiore D G ammette minimo E G ammette massimo ma non minimo F G può essere illimitato Quesito n. 8 La funzione $\sqrt{|\cos x(1-\cos x)|}$ ha $\boxed{A} = \frac{\pi}{2}$ un punto di cuspide e $\boxed{0}$ un punto di cuspide $\boxed{B} = \frac{\pi}{2}$ una cuspide e $\boxed{0}$ un punto angoloso \boxed{C} in $\frac{\pi}{2}$ la funzione è derivabile e 0 è un punto di cuspide $\frac{D}{2}$ un punto angoloso e 0 un punto angoloso $\frac{E}{2}$ in $\frac{-\pi}{2}$ la funzione è derivabile e 0 è un punto angoloso $\frac{|F|}{2}$ un punto angoloso in 0 e la funzione è derivabile Quesito n. 9 Si calcoli il seguente limite $\lim_{x\to 0} \frac{\tan^2 x - x \tan x}{(1-\cos x)^2}$ Quesito n. 10 Il valore minimo di a per cui la funzione $f(x) = (2)^{-2x+2} - 2(\frac{1}{2})^x + x \ln 2$ è crescente se e solo se $x \in (a, +\infty)$ è $\frac{\boxed{\textbf{A}}\ a=-2 \quad \boxed{\textbf{B}}\ a=-1 \quad \boxed{\textbf{C}}\ a=1 \quad \boxed{\textbf{D}}\ a=0 \quad \boxed{\textbf{E}}\ a=2 \quad \boxed{\textbf{F}}\ a=3$ $\mathbf{Quesito}\ \mathbf{n.}\ \mathbf{11}\ \text{La funzione}\ f(x)=\begin{cases} |\cos x| & -\pi \leq x \leq 0\\ |-x^2+x^3| & 0 < x \leq 2 \end{cases} \text{ha}$ A esattamente cinque punti di estremo B esattamente tre punti di estremo C esattamente quattro punti di estremo esattamente sei punti di estremo 🗉 esattamente un punto di estremo 🗜 esattamente due punti di estremo Quesito n. 12 Sia $f(x) = \arctan \frac{2x+1}{x+1}$. Allora f'(x) è uguale a: continua in [a,b] e derivabile in (a,b) tale che $\lim_{x\to a^+} f'(x) = +\infty$. Allora $f'(a^+)$ non esiste in \mathbf{R} . (2) $\dot{\mathbf{E}}$ data una funzione $f:[a,b]\to\mathbf{R}$ continua in [a,b] e derivabile in (a,b) tale che $\lim_{x\to a^+} f'(x)$ non esiste. Allora $f'(a^+)$ non esiste in \mathbf{R} . (3) $\dot{\mathbf{E}}$ data una funzione $h:\mathbf{R}\to\mathbf{R}$ derivabile tale che h'(x) è illimitata inferiormente. Allora si ha $\lim_{x\to+\infty} h(x) = -\infty$ A (1) è falsa, (2) è vera e (3) è vera e (3) è vera e (3) è falsa, (2) è falsa C (1) è falsa, (2) è falsa e (3) è vera D (1) è vera, (2) è falsa e (3) è falsa E (1) è falsa, (2) è falsa e (3) è falsa E (1) è vera, (2) è falsa e (3) è vera Quesito n. 14 Sia $f(x) = e^{2x} - e^{-2x} + \alpha x + \beta x^3$. Essa ha ordine di infinitesimo massimo per $x \to 0$ se e solo se $\boxed{\textbf{A}} \ \alpha = -4, \ \beta = -1 \qquad \boxed{\textbf{B}} \ \alpha = -2, \ \beta = -\frac{8}{3} \qquad \boxed{\textbf{C}} \ \alpha = -4, \ \beta = 0 \qquad \boxed{\textbf{D}} \ \alpha = -4, \ \beta = -2 \qquad \boxed{\textbf{E}} \ \alpha = -4, \ \beta = -\frac{8}{3} \qquad \boxed{\textbf{F}} \ \alpha = 1, \ \beta = -\frac{8}{3} \qquad \boxed{\textbf{A}} \ \alpha = -\frac{8}{3} \qquad \boxed{\textbf{C}} \ \alpha = -\frac{8}{3} \qquad \boxed{\textbf{$

www.mat.uniroma2.it/-callegar

at a
Quesito n. 15 Sia data la funzione $f(x) = ((2x)^x)^x$. Allora $\frac{f'(x)}{xf(x)}$ è uguale a:
$oxed{A} \ 2 \ln \left(3x ight) + 1 oxed{B} \ 4 \ln x + 1 oxed{C} \ 3 \ln \left(2x ight) + 1 oxed{D} \ 2 \ln x + 1 oxed{E} \ 3 \ln x + 1 oxed{F} \ 2 \ln \left(2x ight) + 1$
Quesito n. 16 (1) sia $f:[0,1] \to \mathbf{R}$ una funzione derivabile tale che in $x_o \in [0,1]$ la funzione ha un minimo. Allora $f'(x_o) = 0$ (2) sia $f:[0,1] \to \mathbf{R}$ una funzione tale che in $x_o \in [0,1]$ ha un minimo. Allora f è derivabile in x_o (3) sia $f:[0,1] \to \mathbf{R}$ una funzione derivabile tale che $f'(x) > 0$ per ogni x . Ne segue che $f(x)$ è invertibile (In tutti e tre i casi con f si intende una qualsiasi funzione avente le caratteristiche date). Allora
A (1) è vera, (2) è vera e (3) è falsa B (1) è vera, (2) è vera e (3) è vera C (1) è falsa, (2) è falsa e (3) è vera falsa, (2) è vera e (3) è vera e (3) è vera e (3) è vera e (3) è vera, (2) è falsa e (3) è vera
Compito n.21 Cognome: Nome:
n.1 n.2 n.3 n.4 n.5 n.6 n.7 n.8 n.9 n.10 n.11 n.12 n.13 n.14 n.15 n.16 A<
non scrivere sotto questa linea Totale:

Analisi Matematica 1, ing. Ambiente & Territorio, Energetica, Meccanica, Secondo esonero 02-12-05 Compito n.22 di Analisi Matematica 1, ing. Ambiente & Territorio, Energetica Meccanica, 02-12-05 Quesito n. 1 Date le funzioni f, g e h definite da $f(x) = \sqrt{e^{x^2} + x^x}$, $g(x) = (2x)^x$ e $h(x) = x^{2x}$. Allora per $x \to +\infty$ si ha: Quesito n. 2 Data una funzione $f:[a,b) \to \mathbf{R}$ si consideri: (1) se f è continua è allora esiste $x_0 \in [a,b)$ tale che $f(x_0) = \frac{1}{2}(f(a) + f(b))$ (2) se f è invertibile è monotona (3) se f è derivabile è invertibile. Si dica quale delle seguenti affermazioni è vera \boxed{A} (1) è vera, (2) è falsa e (3) è vera \boxed{B} (1) è vera, (2) è vera e (3) è falsa \boxed{C} (1) è falsa, (2) è falsa e (3) è falsa \boxed{D} (1) è vera, (2) è vera e (3) è vera E (1) è falsa, (2) è vera e (3) è vera F (1) è vera, (2) è falsa e (3) è falsa Quesito n. 3 Si considerino le seguenti tre affermazioni e si dica quale delle A-G è vera. (1) È data una funzione $f: \mathbf{R} \to \mathbf{R}$ derivabile monotona strettamente crescente tale che $\lim_{x \to +\infty} f(x) = +\infty$. Può aversi $\lim_{x \to +\infty} f'(x) = 0$. (2) È data una funzione $f: \mathbf{R} \to \mathbf{R}$ derivabile monotona strettamente crescente tale che $\lim_{x \to +\infty} f(x) = +\infty$. Può aversi f'(x) = 0 su di un insieme illimitato (3) È data una funzione $h:[a,b] \to \mathbf{R}$ derivabile per cui la derivata prima è una funzione strettamente crescente. Allora h ha la concavità rivolta verso l'alto (1) è vera, (2) è falsa e (3) è vera (3) è vera (2) è vera e (3) è falsa (1) è vera, (2) è vera e (3) è vera (3) è vera (3) è vera falsa, (2) è vera e (3) è vera (1) è falsa, (2) è falsa e (3) è vera (1) è vera, (2) è vera e (3) è falsa Quesito n. 4 Sia $f(x) = \arctan \frac{x+1}{2x-1}$. Allora f'(x) è uguale a: A = 0 B = 1 C = 2 D = -2 E = 3 E = -1Quesito n. 6 Si ordinino secondo l'infinito crescente per $x \to +\infty$ le seguenti funzioni $f_1(x) = x^x$, $f_2(x) = e^{x\sqrt{\ln x}}$, $f_3(x) = x^{\sqrt{x}+2x}$ (l'ordinamento va eseguito nel modo seguente: g < f se $\lim_{x \to +\infty} \frac{f}{g} = +\infty$) $oxed{A} 3 \ln{(2x)} + 1 \quad oxed{B} 2 \ln{(3x)} + 1 \quad oxed{C} 2 \ln{x} + 1 \quad oxed{D} 3 \ln{x} + 1 \quad oxed{E} 4 \ln{x} + 1 \quad oxed{F} 2 \ln{(2x)} + 1$ Quesito n. 8 Si calcoli il seguente limite $\lim_{x\to +\infty} \frac{e^{x^2} \sin x - x}{\tan x - \sin x}$ angoloso $\stackrel{\textstyle ext{E}}{=}$ in π un punto in cui la funzione è derivabile $\stackrel{\textstyle ext{F}}{=}$ in $\frac{\pi}{2}$ un punto angoloso e in π un punto angoloso Quesito n. 10 Il limite $\lim_{x\to 0} \frac{xe^x - \ln(1+x)}{\sin^2 x + (1-\cos x)}$ è uguale a: $A_{\frac{1}{2}}$ $B_{-\frac{1}{2}}$ C_1 D_0 $E_{\text{non esiste}}$ $F_{+\infty}$ Quesito n. 11 (1) sia $f:[0,1] \to \mathbf{R}$ una funzione derivabile tale che f'(1/2) = 0. Allora $\frac{f(x) - f(\frac{1}{2})}{\sqrt{x - \frac{1}{2}}} = o(1)$ per $x \to \frac{1}{2}^+$ $f:[0,1] \to \mathbf{R}$ una funzione derivabile tale che x = 0 è un minimo. Allora $f'(0^+) = 0$ (la derivata destra in x = 0 vale zero). (2) sia sia $f:[0,1] o {f R}$ una funzione derivabile tale che f'(x)>0 per ognix. Ne segue che f(x) è invertibile (In tutti e tre i casi con f si intende una qualsiasi funzione avente le caratteristiche date). Allora A (1) è vera, (2) è vera e (3) è vera B (1) è falsa, (2) è vera e (3) è vera C (1) è falsa, (2) è falsa e (3) è vera D (1) è vera, (2) è falsa e (3) è vera $\stackrel{\frown}{E}$ (1) è vera, (2) è vera e (3) è falsa $\stackrel{\frown}{F}$ (1) è falsa, (2) è vera e (3) è falsa $\stackrel{\frown}{E}$ (1) è falsa, (2) è vera e (3) è falsa $\stackrel{\frown}{E}$ (1) è falsa, (2) è vera e (3) è falsa $\stackrel{\frown}{E}$ (3) e vera e (3) è falsa $\stackrel{\frown}{E}$ (3) è falsa $\stackrel{\frown}{E}$ (4) è falsa, (2) è vera e (3) è falsa $\stackrel{\frown}{E}$ (4) è falsa $\stackrel{\frown}{E}$ (5) è falsa $\stackrel{\frown}{E}$ (7) è falsa $\stackrel{\frown}{E}$ (8) è falsa $\stackrel{\frown}{E}$ (9) è falsa $\stackrel{\frown}{E}$ (1) è falsa $\stackrel{\frown}{E}$ (2) è vera e (3) è falsa $\stackrel{\frown}{E}$ (3) è falsa $\stackrel{\frown}{E}$ (3) è falsa $\stackrel{\frown}{E}$ (4) è falsa $\stackrel{\frown}{E}$ (5) è falsa $\stackrel{\frown}{E}$ (7) è falsa $\stackrel{\frown}{E}$ (8) è falsa $\stackrel{\frown}{E}$ (9) è falsa $\stackrel{\frown}{E}$ (1) è falsa $\stackrel{\frown}{E}$ (2) è falsa $\stackrel{\frown}{E}$ (3) è falsa $\stackrel{\frown}{E}$ (4) è falsa $\stackrel{\frown}{E}$ (5) è falsa $\stackrel{\frown}{E}$ (7) è falsa $\stackrel{\frown}{E}$ (8) è falsa $\stackrel{\frown}{E}$ (9) è falsa $\stackrel{\frown}{E}$ (1) è falsa $\stackrel{\frown}{E}$ (2) è falsa $\stackrel{\frown}{E}$ (3) è falsa $\stackrel{\frown}{E}$ (4) è falsa $\stackrel{\frown}{E}$ (5) è falsa $\stackrel{\frown}{E}$ (7) è falsa $\stackrel{\frown}{E}$ (8) è falsa $\stackrel{\frown}{E}$ (9) è falsa $\stackrel{\frown}{E}$ (1) è falsa $\stackrel{\frown}{E}$ (2) è falsa $\stackrel{\frown}{E}$ (3) è falsa $\stackrel{\frown}{E}$ (4) è falsa $\stackrel{\frown}{E}$ (5) è falsa $\stackrel{\frown}{E}$ (7) è falsa $\stackrel{\frown}{E}$ (8) è falsa $\stackrel{\frown}{E}$ (8) è falsa $\stackrel{\frown}{E}$ (8) è falsa $\stackrel{\frown}{E}$ (9) è falsa $\stackrel{\frown}{E}$ (1) è falsa $\stackrel{\frown}{E}$ (2) è falsa $\stackrel{\frown}{E}$ (3) è falsa $\stackrel{\frown}{E}$ (4) è falsa $\stackrel{\frown}{E}$ (5) è falsa $\stackrel{\frown}{E}$ (7) è falsa $\stackrel{\frown}{E}$ (affermazioni è vera $oxed{f A}$ G ammette massimo $oxed{f B}$ G ammette estremo inferiore ma non superiore $oxed{f C}$ G ammette minimo ma non massimo $oxed{f D}$ G non Quesito n. 13 La funzione $f(x) = \begin{cases} |x^2 - x| & 0 \le x \le 2 \\ -xe^x & x < 0 \end{cases}$ ha

orizzontale ed uno obliquo

Al esattamente quattro punti di estremo, nessun asintoto verticale, un asintoto orizzontale, un asintoto obliquo un asintoto o

Quesito n. 14 Sia $f(x) = \ln(1+x) - \sin x + \alpha x^2 + \beta x^3$. Essa ha ordine di infinitesimo massimo per $x \to 0$ se e solo se $\boxed{A} = \frac{1}{2}$, $\beta = 1$ $\boxed{B} = 1$, $\beta = \frac{1}{2}$ $\boxed{C} = \frac{1}{2}$, $\beta = \frac{1}{2}$ $\boxed{D} = \frac{1}{2}$, $\beta = -\frac{1}{2}$ $\boxed{E} = \frac{1}{2}$, $\beta = -1$ $\boxed{F} = \frac{1}{2}$, $\beta = \frac{1}{2}$ Quesito n. 15 Sia $f(x) = \ln(7 + 8 \sin x + 9 \cos x)$. Allora f'(0) è eguale a $\boxed{A} = \frac{1}{3}$ $\boxed{B} = \frac{3}{4}$ $\boxed{C} = \frac{3}{5}$ $\boxed{D} = \frac{1}{2}$ $\boxed{E} = \frac{3}{7}$ $\boxed{F} = 1$ Quesito n. 16 Data una funzione $f: [0,1) \cup [2,3] \to \mathbb{R}$ sia $g(x): [2,3] \to \mathbb{R}$ la f ristretta all'intervallo [2,3] $(g(x) = f|_{[2,3]})$. Si consideri: (1) se f è continua allora esiste (finito o infinito) $\lim_{x \to 1} f(x)$ (2) se f è continua ed invertibile allora g(x) è monotona (3) se f è strettamente monotona è invertibile . Si dica quale delle seguenti affermazioni è vera $\boxed{A} = \frac{1}{4}$ (1) è vera, (2) è vera e (3) è falsa $\boxed{B} = \frac{1}{4}$ (1) è vera, (2) è falsa e (3) è falsa $\boxed{E} = \frac{1}{4}$ (1) è vera, (2) è falsa e (3) è falsa $\boxed{E} = \frac{1}{4}$ (1) è vera, (2) è falsa e (3) è falsa $\boxed{E} = \frac{1}{4}$ (1) è vera, (2) è falsa e (3) è falsa $\boxed{E} = \frac{1}{4}$ (1) è vera, (2) è falsa e (3) è falsa $\boxed{E} = \frac{1}{4}$ (1) è vera, (2) è falsa e (3) è falsa $\boxed{E} = \frac{1}{4}$ (1) è vera, (2) è falsa e (3) è falsa $\boxed{E} = \frac{1}{4}$ (1) è vera, (2) è falsa e (3) è falsa $\boxed{E} = \frac{1}{4}$ (1) è vera, (2) è falsa e (3) è falsa $\boxed{E} = \frac{1}{4}$ (1) è vera, (2) è falsa e (3) è falsa $\boxed{E} = \frac{1}{4}$ (1) è vera, (2) è falsa e (3) è falsa $\boxed{E} = \frac{1}{4}$ (2) è falsa e (3) è falsa e (3) è falsa $\boxed{E} = \frac{1}{4}$ (2) è falsa e (3) è falsa e (

Analisi Matematica 1, ing. Ambiente & Territorio, Energetica, Meccanica, Secondo esonero 02-12-05 Compito n.23 di Analisi Matematica 1, ing. Ambiente & Territorio, Energetica Meccanica, 02-12-05 **Quesito n. 1** La funzione $\arctan(x|x-1|)^{1/3}$ ha A in 1 un flesso a tangente verticale e in 0 un punto angoloso B in 1 una cuspide e in 0 un flesso a tangente verticale C in 0 una cuspide e in 1 un flesso a tangente verticale D in 0 un punto in cui la funzione è derivabile E in 1 una cuspide e in 0 una cuspide F in 1 un punto angoloso e in 0 un punto angoloso Quesito n. 2 La funzione $f(x) = \begin{cases} -x^2 e^{-x^2} & x \le 0 \\ \left| \frac{1}{x} + 8x - 6 \right| & x > 0 \end{cases}$ ha Al non più di tre punti di estremo, nessun asintoto verticale, un asintoto orizzontale,nessun asintoto obliquo B non più di cinque punti di estremo, un asintoto verticale, un asintoto orizzontale e nessun asintoto obliquo 🖸 non più di quattro punti di estremo, un asintoto verticale, nessun asintoto orizzontale ed uno obliquo 🗖 almeno cinque punti di estremo, un asintoto verticale, un asintoto orizzontale ed uno obliquo 🗉 non più di quattro punti di estremo, un asintoto verticale, un asintoto orizzontale ed uno obliquo E esattamente tre tre punti di estremo, un asintoto verticale, un asintoto orizzontale ed uno obliquo Quesito n. 3 (1) Data una funzione $f:[a,b] \to \mathbf{R}$ derivabile in (a,b) sia $f'(x_o) = 0$, $x_o \in (a,b)$. Allora x_o è un punto di massimo oppure di minimo oppure di flesso a tangente orizzontale (2) sia $f:[0,1] \cup [2,3] \to \mathbf{R}$ una funzione derivabile tale che f'(x) > 0 per ogni x. Allora f(x) è crescente sul suo dominio (3) sia $f:[0,1] \to \mathbf{R}$ una funzione derivabile. Allora $\frac{f(x)-f(0)}{x^{1/2}} = o(1)$ per $x \to 0^+$ (In tutti e tre i casi con f si intende una qualsiasi funzione avente le caratteristiche date). Allora [A] (1) è vera, (2) è falsa e (3) è vera [B] (1) è falsa, (2) è vera e (3) è vera [C] (1) è vera, (2) è vera e (3) è vera [D] (1) è Quesito n. 4 Data una funzione $f:[a,b] \to \mathbf{R}$ si consideri: (1) se f è monotona è limitata (2) se f è monotona è invertibile (3) se f è derivabile e invertibile allora $f' \neq 0$ per ogni x. Si dica quale delle seguenti affermazioni è vera A (1) è falsa, (2) è vera e (3) è falsa B (1) è falsa, (2) è vera e (3) è vera C (1) è vera, (2) è falsa e (3) è vera D (1) è vera, (2) è falsa e (3) è falsa $\stackrel{\frown}{E}$ (1) è vera, (2) è vera e (3) è falsa $\stackrel{\frown}{F}$ (1) è vera, (2) è vera e (3) è vera $\stackrel{\frown}{Q}$ e vera e (3) è vera e (3) è vera $\stackrel{\frown}{Q}$ e vera e (3) è vera e (4) è vera e $oxed{f A}$ G è limitato $oxed{f B}$ G non ammette massimo $oxed{f C}$ G non ammette minimo $oxed{f D}$ G ammette estremo inferiore ma non superiore $oxed{\mathbb{E}}$ G ammette estremo superiore ma non inferiore $oxed{\mathbb{F}}$ G può essere illimitato Quesito n. 6 Si ordinino secondo l'infinitesimo crescente per $x \to 0^+$ le seguenti funzioni $f_1(x) = xe^{-1/x}$, $f_2(x) = e^{-1/x^2}$, $f_3(x) = x^{1/x}$, (l'ordinamento va eseguito nel modo seguente: g < f se $\lim_{x \to 0^+} \frac{f}{g} = 0$ ossia f = o(g)) A (1) è falsa, (2) è falsa e (3) è falsa B (1) è falsa, (2) è vera e (3) è falsa C (1) è falsa, (2) è falsa e (3) è vera D (1) è falsa, (2) è vera e (3) è vera E (1) è vera, (2) è falsa e (3) è falsa F (1) è vera, (2) è vera e (3) è vera Quesito n. 8 Il valore minimo di a per cui la funzione $f(x) = (2)^{-2x} - (\frac{1}{2})^x + x \ln 2$ è crescente se e solo se $x \in (a, +\infty)$ è Quesito n. 10 Si considerino le seguenti tre affermazioni e si dica quale delle A-G è vera. (1) È data una funzione $f:[a,b)\to \mathbf{R}$ derivabile tale che $\lim_{x\to b^-} f(x) = +\infty$. Allora $\lim_{x\to b^-} f'(x) = +\infty$. (2) È data una funzione $g: \mathbf{R} \to \mathbf{R}$ tale che $\lim_{x\to +\infty} g(x) = +\infty$. (3) È data una funzione $f:[a,b)\to \mathbf{R}$ tale che |f'(x)| è 0. Allora non è detto che sia definitivamente positiva oppure negativa illimitata. Allora f(x) è illimitata. A (1) è falsa, (2) è falsa e (3) è vera (1) è vera, (2) è falsa e (3) è vera (2) è falsa, (2) è vera e (3) è falsa (2) è falsa falsa, (2) è vera e (3) è vera E (1) è vera, (2) è vera e (3) è vera E (1) è vera, (2) è vera e (3) è falsa Quesito n. 11 Il limite $\lim_{x\to 0} \frac{e^x \ln(1+x) - xe^{\frac{1}{2}x}}{3x^4 + (1-\cos x)}$ è uguale a:

 $oxed{A}$ -2 $oxed{B}$ 0 $oxed{C}$ $\underline{1}$ \overline{D} $+\infty$ \overline{E} non esiste \overline{F} -1

Quesito n. 12 Date le funzioni f, g e h definite da $f(x) = \ln(1+x^x)$, $g(x) = \ln(1+x^2)$ e $h(x) = \sqrt{\ln(1+e^{x^3})}$. Allora per

Analisi Matematica 1, ing. Ambiente & Territorio, Energetica, Meccanica, Secondo esonero 02-12-05 Compito n.24 di Analisi Matematica 1, ing. Ambiente Territorio, Energetica Meccanica, 02-12-05 Quesito n. 1 Sia data una funzione $f:[0,3] \to \mathbf{R}$ continua e strettamente decrescente. Sia data inoltre la funzione $g:[1,2] \to \mathbf{R}$ tale che g(x)=f(x) per ogni $x\in[1,2]$. Sia $G=\{y=g(x):x\in[1,2]\}$ l'insieme dei valori assunti da g(x). Si dica quale delle seguenti affermazioni è vera A G è limitato B G ammette estremo inferiore ma non superiore C G non ammette minimo D G non ammette massimo \sqsubseteq G può essere illimitato \sqsubseteq G ammette estremo superiore ma non inferiore Quesito n. 2 Si considerino le seguenti tre affermazioni e si dica quale delle A-G è vera. (1) È data una funzione $f:[a,b]\to \mathbf{R}$ continua in [a,b] e derivabile in (a,b) tale che $\lim_{x\to a^+} f'(x) = +\infty$. Allora $f'(a^+)$ non esiste in \mathbf{R} . (2) $\dot{\mathbf{E}}$ data una funzione $f:[a,b]\to\mathbf{R}$ continua in [a,b] e derivabile in (a,b) tale che $\lim_{x\to a^+} f'(x)$ non esiste. Allora $f'(a^+)$ non esiste in \mathbf{R} . (3) $\dot{\mathbf{E}}$ data una funzione $h:\mathbf{R}\to\mathbf{R}$ derivabile tale che h'(x) è illimitata inferiormente. Allora si ha $\lim_{x\to +\infty} h(x) = -\infty$ A (1) è falsa, (2) è vera e (3) è falsa (1) è falsa, (2) è vera e (3) è vera (1) è falsa, (2) è falsa (2) è falsa (3) è falsa (1) è vera, (2) è falsa e (3) è vera $\stackrel{\textstyle oxdot{}}{\textstyle oxdot{}}$ (1) è vera, (2) è falsa e (3) è falsa $\stackrel{\textstyle oxdot{}}{\textstyle oxdot{}}$ (1) è falsa, (2) è falsa e (3) è vera Quesito n. 3 Sia $f(x) = \beta - \frac{1}{2}x \sin x - \cos x + \alpha x^4$. Essa ha ordine di infinitesimo massimo per $x \to 0$ se e solo se **Quesito n. 5** Sia data la funzione $f(x) = \left(x^{x^3}\right)^x$. Allora $\frac{f'(x)}{x^3 f(x)}$ è uguale a: Quesito n. 6 Data una funzione $f:[a,b) \to \mathbf{R}$ si consideri: (1) se f è continua è allora esiste $x_0 \in [a,b)$ tale che $f(x_0) = \frac{1}{2}(f(a) + f(b))$ (2) se f è invertibile è monotona (3) se f è derivabile è invertibile. Si dica quale delle seguenti affermazioni è vera A (1) è falsa, (2) è vera e (3) è vera (2) è falsa e (3) è vera (2) è falsa e (3) è vera (3) è falsa (2) è falsa e (3) è falsa vera, (2) è vera e (3) è vera $\stackrel{\textstyle \cdot}{}$ (1) è vera, (2) è falsa $\stackrel{\textstyle \cdot}{}$ (1) è vera, (2) è vera e (3) è falsa $\stackrel{\textstyle \cdot}{}$ Quesito n. 7 La funzione $\sqrt{|\sin x(1+\sin x)|}$ ha $\boxed{\textbf{A}}$ in $-\pi$ una cuspide e in $\frac{-\pi}{2}$ una cuspide $\boxed{\textbf{B}}$ in $-\pi$ un punto angoloso $\boxed{\textbf{C}}$ in $\frac{-\pi}{2}$ una cuspide $\boxed{\textbf{D}}$ in $\frac{-\pi}{2}$ un punto in cui la funzione è derivabile $\stackrel{\text{E}}{=}$ in $-\pi$ una cuspide e in $\frac{-\pi}{2}$ un punto angoloso $\stackrel{\text{F}}{=}$ in $-\pi$ un punto angoloso e in $\frac{-\pi}{2}$ un punto angoloso Quesito n. 8 Sia $f(x) = \ln(2 + 14\sin x + 4\cos x)$. Allora f'(0) è eguale a $\frac{\boxed{\textbf{A}\ \frac{7}{5}\ \boxed{\textbf{B}\ \frac{7}{9}\ \boxed{\textbf{C}\ \frac{7}{4}\ \boxed{\textbf{D}\ \frac{7}{3}\ \boxed{\textbf{E}\ \frac{7}{6}\ \boxed{\textbf{F}}\ 1}}}{\textbf{Quesito n. 9}\ \text{La funzione}\ f(x) = \begin{cases} |x^2+x| & -2 \leq x \leq 0 \\ \left|\frac{1}{x^2} - \frac{1}{x}\right| & x > 0 \end{cases}}$ A esattamente cinque punti di estremo, un asintoto verticale, un asintoto orizzontale, nessun asintoto obliquo

punti di estremo, nessun asintoto verticale, nessun asintoto orizzontale, un asintoto obliquo C non più di sei punti di estremo, un asintoto verticale, un asintoto orizzontale, nessun asintoto obliquo D non più di sei punti di estremo, un asintoto verticale, nessun asintoto orizzontale e un asintoto obliquo E esattamente quattro punti di estremo, un asintoto verticale, un asintoto orizzontale, un asintoto obliquo 🕒 non più di tre punti di estremo, un asintoto verticale, un asintoto orizzontale ed uno obliquo

Quesito n. 10 Sia $f(x) = \arctan \frac{2x+1}{x+1}$. Allora f'(x) è uguale as

$$\overline{\mathbf{A}} \ a = 0 \quad \overline{\mathbf{B}} \ a = -2 \quad \overline{\mathbf{C}} \ a = 1 \quad \overline{\mathbf{D}} \ a = 3 \quad \overline{\mathbf{E}} \ a = 2 \quad \overline{\mathbf{F}} \ a = -1$$

A a=0 B a=-2 C a=1 D a=3 E a=2 F a=-1Quesito n. 12 Si calcoli il seguente limite $\lim_{x\to 0} \frac{\tan^2 x - x \tan x}{(1-\cos x)^2}$

 $A = \frac{4}{3}$ B_1 $C = \frac{1}{2}$ D_0 $E = \frac{2}{3}$ $F = \frac{1}{3}$

Quesito n. 13 Il limite $\lim_{x\to 0} \frac{xe^x - \ln(1+x)}{\sin^2 x + (1-\cos x)}$ è uguale a:

A $\frac{1}{2}$ B non esiste C 0 D $+\infty$ E 1 F $-\frac{1}{2}$

Mains Matematica 1, Ing. Amsterior & Territorio, Energetta, Meccanica, Secondo Contro ve 12 vo
Quesito n. 14 (1) sia $f:[a,b] \to \mathbf{R}$ una funzione derivabile tale che $x_o \in [a,b]$ è un punto di massimo. Allora esiste un intorno di x_o tale che $f'(x_o)(x-x_o) \le 0$ per ogni x appartenente all'intorno (2) sia $f:[a,b] \to \mathbf{R}$ una funzione derivabile tale che $x_o \in (a,b)$ è un punto di massimo. Allora $\exists \ \delta > 0: \ x \in (x_o - \delta, x_o + \delta) \Rightarrow f'(x_o)(x-x_o) < 0$ (3) sia $f:[0,1] \to \mathbf{R}$ una funzione derivabile. Allora $f(x) - f(0) - f'(0)x = o(x)$ per $x \to 0^+$ (si assume che in x_o la funzione ha un minimo se esiste un intorno $(x_o - \delta, x_o + \delta)$ tale che $f(x) \ge f(x_o)$ per $x \in (x_o - \delta, x_o + \delta)$ e viceversa per il massimo)) (In tutti e tre i casi con f si intende una qualsiasi funzione avente le caratteristiche date). Allora
A (1) è vera, (2) è vera e (3) è vera B (1) è vera, (2) è falsa e (3) è vera C (1) è falsa, (2) è falsa e (3) è vera vera, (2) è vera e (3) è falsa E (1) è falsa, (2) è vera e (3) è falsa E (1) è falsa, (2) è vera e (3) è vera e (3) è vera
Quesito n. 15 Si ordinino secondo l'infinitesimo crescente per $x \to 0^+$ le seguenti funzioni $f_1(x) = \frac{e^{\sin x^3} - 1}{\cos x - 1}$, $f_2(x) = (1 + x)^{\frac{-1}{x^2}}$,
$f_3(x) = \frac{1}{\ln x}(1+x^2)^{\frac{1}{x}}, \text{ (l'ordinamento va eseguito nel modo seguente: } g < f \text{ se } \lim_{x \to 0^+} \frac{f}{g} = 0 \text{ ossia } f = o(g))$ $\boxed{\textbf{A}} \ f_3 < f_2 < f_1 \qquad \boxed{\textbf{B}} \ f_2 < f_3 < f_1 \qquad \boxed{\textbf{C}} \ f_1 < f_2 < f_3 \qquad \boxed{\textbf{D}} \ f_2 < f_1 < f_3 \qquad \boxed{\textbf{E}} \ f_1 < f_3 < f_2 \qquad \boxed{\textbf{F}} \ f_3 < f_1 < f_2$
Quesito n. 16 Data una funzione $f:[0,1] \cup [2,3] \to \mathbf{R}$ sia $g(x):[0,1] \to \mathbf{R}$ la f ristretta all'intervallo $[0,1]$ ($g(x)=f _{[0,1]}$). Si consideri: (1) se f è continua è limitata (2) se f è continua ed invertibile allora $g(x)$ è monotona (3) se f è invertibile è monotona. Si dica quale delle seguenti affermazioni è vera

A (1) è vera, (2) è vera e (3) è vera (2) è vera e (3) è vera e (3) è falsa (2) è vera e (3) è falsa, (2) è vera e (3) è falsa (2) è vera e (3) è vera (3) è vera (2) è falsa e (3) è vera (3) è vera (4) è falsa, (2) è falsa e (3) è vera

Compito n.24	Cognome:
n.1 n.2 n.3 A A A B B B B C C C C D D D E E E E F F F	n.4 n.5 n.6 n.7 n.8 n.9 n.10 n.11 n.12 n.13 n.14 n.15 n.16 A
	non scrivere sotto questa linea Totale:

Analisi Matematica 1, ing. Ambiente & Territorio, Energetica, Meccanica, Secondo esonero 02-12-05 Compito n.25 di Analisi Matematica 1, ing. Ambiente & Territorio, Energetica Meccanica, 02-12-05 **Quesito n. 1** Sia $f(x) = e^{2x} - e^{-2x} + \alpha x + \beta x^3$. Essa ha ordine di infinitesimo massimo per $x \to 0$ se e solo se (l'ordinamento va eseguito nel modo seguente: g < f se $\lim_{x \to +\infty} \frac{f}{g} = +\infty$) A (1) è vera, (2) è falsa e (3) è vera (1) è falsa, (2) è vera e (3) è vera (1) è falsa, (2) è falsa e (3) è vera (1) è vera, (2) è vera e (3) è vera (2) è falsa e (3) è falsa (3) è falsa (2) è vera e (3) è falsa Quesito n. 4 Si calcoli il seguente limite $\lim_{x\to 0} \frac{\sin x - x \cos x}{x(e^{2x} - e^x - x)}$ $A_0 B_{\frac{-1}{2}} C_{\frac{2}{5}} D_{-\frac{2}{9}} E_{\frac{2}{9}} F_{\frac{1}{2}}$ Quesito n. 5 Sia data la funzione $f(x) = (x^x)^{2x}$. Allora $\frac{f'(x)}{2xf(x)}$ è uguale a: f è strettamente monotona è invertibile . Si dica quale delle seguenti affermazioni è vera A (1) è vera, (2) è vera e (3) è falsa B (1) è vera, (2) è falsa e (3) è vera C (1) è vera, (2) è falsa e (3) è falsa D (1) è Quesito n. 7 La funzione $\arctan(x|x-1|)^{1/3}$ ha A in 1 un flesso a tangente verticale e in 0 un punto angoloso B in 1 una cuspide e in 0 un flesso a tangente verticale C in 0 una cuspide e in 1 un flesso a tangente verticale D in 1 una cuspide e in 0 una cuspide E in 1 un punto angoloso e in 0 un punto angoloso F in 0 un punto in cui la funzione è derivabile Quesito n. 8 La funzione $f(x) = \begin{cases} |\sin x| & -2\pi \le x \le 0 \\ xe^{-x} & 0 < x \end{cases}$ ha A esattamente quattro punti di estremo, nessun asintoto verticale, nessun asintoto orizzontale, un asintoto obliquo quattro punti di estremo, nessun asintoto verticale, un asintoto orizzontale C esattamente cinque punti di estremo, un asintoto verticale, un asintoto orizzontale D esattamente sei punti di estremo, nessun asintoto verticale, nessun asintoto orizzontale esattamente sei punti di estremo, un asintoto orizzontale un asintoto obliquo orizzontale Quesito n. 9 Il limite $\lim_{x\to 0} \frac{e^x \ln(1+x) - xe^{\frac{1}{2}x}}{3x^4 + (1-\cos x)}$ è uguale a: A = 1 B = 2 C = 1 $D = \infty$ E = 0 $E = \infty$ non esiste Quesito n. 10 Sia data una funzione $f:[0,3] \to \mathbf{R}$ continua e strettamente crescente. Sia data inoltre la funzione $g:[1,2) \to \mathbf{R}$ tale che g(x) = f(x) per ogni $x \in [1,2)$. Sia $G = \{y = g(x) : x \in [1,2)\}$ l'insieme dei valori assunti da g(x). Si dica quale delle seguenti $oxed{A}$ G ammette estremo inferiore ma non superiore $oxed{B}$ G ammette minimo ma non massimo $oxed{C}$ G ammette massimo $oxed{D}$ G non ammette minimo $\stackrel{ ext{E}}{ ext{E}}$ G può essere illimitato $\stackrel{ ext{F}}{ ext{F}}$ G non ammette estremo superiore nè inferiore Quesito n. 11 Sia $f(x) = \arctan \frac{2x-1}{x+1}$. Allora f'(x) è uguale a: (3) se f è monotona è continia. Si dica quale delle seguenti affermazioni è vera

 $oxed{A} a = 3$ $oxed{B} a = 2$ $oxed{C} a = -1$ $oxed{D} a = -2$ $oxed{E} a = 1$ $oxed{F} a = 0$

A (1) è vera, (2) è vera e (3) è vera E (1) è vera, (2) è falsa e (3) è vera E (1) è vera, (2) è falsa e (3) è falsa E (1) è vera, (2) è falsa e (3) è falsa E (1) è vera, (2) è falsa e (3) è falsa E (1) è falsa, (2) è falsa e (3) è vera E (3) è vera E (1) è vera, (2) è falsa e (3) è falsa E (1) è falsa, (2) è falsa e (3) è vera E (3) è vera E (4) è falsa e (3) è vera E (5) è falsa e (6) è falsa e (7) è falsa e (8) è vera E (8) è falsa e (9) è falsa e (1) è vera, (2) è falsa e (3) è vera E (1) è vera, (2) è falsa e (3) è vera E (1) è vera, (2) è vera e (3) è vera E (3) è vera E (1) è vera, (2) è falsa e (3) è vera E (3) è vera E (1) è vera, (2) è vera e (3) è vera E (3) è vera E (3) è vera E (4) è vera, (2) è vera e (3) è vera E (3) è vera E (4) è vera, (2) è falsa e (3) è vera E (3) è vera E (4) è vera, (2) è falsa e (3) è vera E (3) è vera E (4) è vera, (2) è falsa e (3) è vera E (4) è vera, (2) è falsa e (3) è vera E (3) è vera E (4) è vera, (2) è falsa e (3) è vera E (3) è vera E (4) è vera, (2) è falsa e (3) è vera E (3) è vera E (4) è vera, (2) è falsa e (3) è vera E (3) è vera E (4) è vera, (2) è falsa e (3) è vera E (3) è vera E (4) è vera, (2) è falsa e (3) è vera E (3) è vera E (4) è vera E (5) è vera E (6) è vera E (7) è vera E (8) è vera E (8) è vera E (8) è vera E (9) è ver

Quesito n. 14 Si considerino le seguenti tre affermazioni e si dica quale delle A-G è vera. (1) È data una funzione $f: \mathbf{R} \to \mathbf{R}$ monotona strettamente crescente e derivabile. Allora $\lim_{x \to +\infty} f'(x) = +\infty$ (2) È data una funzione $g: \mathbf{R} \to \mathbf{R}$ tale che $\lim_{x \to +\infty} g(x) = 0$. Allora si ha $\lim_{x \to +\infty} g'(x) = 0$. (3) È data una funzione $g: \mathbf{R} \to \mathbf{R}$ tale che $\lim_{x \to +\infty} g(x) = 0$. Allora se esiste $\lim_{x \to +\infty} g'(x)$ esso è 0.
A (1) è vera, (2) è falsa e (3) è vera B (1) è falsa, (2) è vera e (3) è falsa C (1) è falsa, (2) è falsa e (3) è vera D (1) è
falsa, (2) è vera e (3) è vera (2) è vera e (3) è falsa (2) è falsa (2) è falsa e (3) è falsa
Quesito n. 15 Date le funzioni f , g e h definite da $f(x) = \sqrt{e^{x^2} + x^x}$, $g(x) = (2x)^x$ e $h(x) = x^{2x}$. Allora per $x \to +\infty$ si ha:
$\operatorname{e} h(x) = o(g(x))$ $\operatorname{E} h(x) = o(f(x)) \operatorname{e} f(x) = o(g(x))$ $\operatorname{E} f(x) = o(g(x)) \operatorname{e} g(x) = o(h(x))$
Quesito n. 16 Sia $f(x) = \ln(7 + 9\sin x + 5\cos x)$. Allora $f'(0)$ è eguale a
$\boxed{\mathbf{A} \ \frac{1}{2} \boxed{\mathbf{B}} \ \frac{3}{5} \boxed{\mathbf{C}} \ \frac{3}{7} \boxed{\mathbf{D}} \ \frac{3}{4} \boxed{\mathbf{E}} \ 1 \boxed{\mathbf{F}} \ \frac{1}{3}}$
Compito n.25 Cognome:
n.1 n.2 n.3 n.4 n.5 n.6 n.7 n.8 n.9 n.10 n.11 n.12 n.13 n.14 n.15 n.16 A<
non scrivere sotto questa linea Totale:

Compito n.26 di Analisi Matematica 1, ing. Ambiente & Territorio, Energetica Meccanica, 02-12-05 Quesito n. 1 Si ordinino secondo l'infinito crescente per $x \to +\infty$ le seguenti funzioni $f_1(x) = e^{x^{3/2}/\ln^2 x}$, $f_2(x) = e^{x \ln(\ln x)}$, $f_3(x) = e^{\sqrt{x} \ln^4 x}$, (l'ordinamento va eseguito nel modo seguente: g < f se $\lim_{x \to +\infty} \frac{f}{g} = +\infty$) Quesito n. 3 Si calcoli il seguente limite $\lim_{x\to 0} \frac{x^2 \cos^2 x - e^{x^2} + 1}{x^2 \sin^2 x}$ Quesito n. 4 Date le funzioni f, g e h definite da $f(x) = x^{x \ln x}$, $g(x) = (\ln x)^{x^2}$ e $h(x) = 2^{e^x}$. Allora per $x \to +\infty$ si ha: affermazioni è vera A G ammette estremo superiore ma non inferiore B G è limitato C G non ammette massimo D G non ammette minimo $oxed{\mathbb{E}}$ G ammette estremo inferiore ma non superiore $oxed{\mathbb{F}}$ G può essere illimitato Quesito n. 6 Sia $f(x) = \frac{1}{2} \ln(1+x^2) + \cos x + \beta + \alpha x^4$. Essa ha ordine di infinitesimo massimo per $x \to 0$ se e solo se una cuspide \square in $\frac{\pi}{2}$ una cuspide e in π un punto angoloso \square in π una cuspide \square in $\frac{\pi}{2}$ un punto angoloso Quesito n. 8 Si considerino le seguenti tre affermazioni e si dica quale delle A-G è vera. (1) È data una funzione $f:[a,b] \to \mathbf{R}$ continua in [a,b] e derivabile in (a,b) tale che $\lim_{x\to a^+} f'(x) = +\infty$. Allora $f'(a^+)$ non esiste in $\mathbf R$. (2) $\dot{\mathbf E}$ data una funzione $f:[a,b]\to \mathbf{R}$ continua in [a,b] e derivabile in (a,b) tale che $\lim_{x\to a^+} f'(x)$ non esiste. Allora $f'(a^+)$ non esiste in \mathbf{R} . una funzione $h: \mathbf{R} \to \mathbf{R}$ derivabile tale che h'(x) è illimitata inferiormente. Allora si ha $\lim_{x \to +\infty} h(x) = -\infty$ A (1) è vera, (2) è falsa e (3) è falsa B (1) è falsa, (2) è vera e (3) è falsa C (1) è vera, (2) è falsa e (3) è vera D (1) è falsa, (2) è falsa e (3) è falsa (2) è falsa, (2) è falsa e (3) è vera e (3) è vera e (3) è vera Quesito n. 9 Data una funzione $f: [0,1] \cup [2,3] \to \mathbf{R}$ sia $g(x): [0,1] \to \mathbf{R}$ la f ristretta all'intervallo [0,1] $(g(x)=f|_{[0,1]})$. Si consideri: (1) se f è continua è limitata (2) se f è continua ed invertibile allora g(x) è monotona (3) se f è invertibile è monotona. Si dica quale delle seguenti affermazioni è vera A (1) è falsa, (2) è vera e (3) è falsa B (1) è vera, (2) è falsa e (3) è vera C (1) è vera, (2) è vera e (3) è vera D (1) è Quesito n. 10 Sia $f(x) = \arctan \frac{x+1}{2x-1}$. Allora f'(x) è uguale a: 🖾 non più di cinque punti di estremo, nessun asintoto verticale, un asintoto orizzontale e un asintoto obliquo 🕒 esattamente quattro punti di estremo, nessun asintoto verticale, un asintoto orizzontale, un asintoto obliquo C non più di cinque punti di estremo, nessun asintoto verticale, nessun asintoto orizzontale, un asintoto obliquo 🔲 non più di cinque punti di estremo, nessun asintoto verticale, un asintoto orizzontale, nessun asintoto obliquo 🗉 esattamente quattro punti di estremo, nessun asintoto verticale, un asintoto orizzontale, nessun asintoto obliquo 🗜 esattamente quattro punti di estremo, nessun asintoto verticale, nessun asintoto orizzontale ed uno obliquo Quesito n. 12 Il valore minimo di a per cui la funzione $f(x) = (2)^{-2x+1} - 3(\frac{1}{2})^x + x \ln 2$ è crescente se e solo se $x \in (a, +\infty)$ è $\frac{1}{2}(f(a) + f(b))$ (2) se f è invertibile è monotona (3) se f è derivabile è invertibile. Si dica quale delle seguenti affermazioni A (1) è vera, (2) è falsa e (3) è vera B (1) è falsa, (2) è vera e (3) è vera C (1) è vera, (2) è vera e (3) è vera e (3) è vera e (3) è falsa E (1) è falsa, (2) è falsa e (3) è falsa E (1) è falsa, (2) è falsa e (3) è falsa e (3) è falsa

Quesito n. 14 Sia data la funzione $f(x) = ((3x)^x)^x$. Allora $\frac{f'(x)}{xf(x)}$ è uguale a:
$f A \ 4 \ln x + 1 f B \ 2 \ln x + 1 f C \ 3 \ln x + 1 f D \ 2 \ln (2x) + 1 f E \ 3 \ln (2x) + 1 f F \ 2 \ln (3x) + 1$
Quesito n. 15 Il limite $\lim_{x\to 0} \frac{xe^x - \ln(1+x)}{\sin^2 x + (1-\cos x)}$ è uguale a:
$f A$ non esiste $f B$ $-rac{1}{3}$ $f C$ $+\infty$ $f D$ $rac{1}{2}$ $f E$ $f 1$ $f F$ $f 0$
Quesito n. 16 (1) sia $f: [a, b] \to \mathbf{R}$ una funzione derivabile tale che $x_o \in [a, b]$ è un punto di minimo. Allora esiste un intorno di x_o tale che $f'(x_o)(x-x_o) \geq 0$ per ogni x appartenente all'intorno (2) sia $f: [a, b] \to \mathbf{R}$ una funzione derivabile tale che $x_o \in (a, b)$ è un punto di massimo. Allora $\exists \ \delta > 0 : x \in (x_o - \delta, x_o + \delta) \Rightarrow f'(x_o)(x-x_o) < 0$ (3) sia $f: [a, b] \to \mathbf{R}$ una funzione derivabile tale che $x_o \in (a, b)$ è un punto di minimo e $f'(x_o) = 0$. Allora $f''(x_o) > 0$ (si assume che in x_o la funzione ha un minimo se esiste un intorno $(x_o - \delta, x_o + \delta)$ tale che $f(x) \geq f(x_o)$ per $x \in (x_o - \delta, x_o + \delta)$ e viceversa per il massimo)) (In tutti e tre i casi con f si intende una qualsiasi funzione avente le caratteristiche date). Allora A (1) è vera, (2) è falsa e (3) è falsa B (1) è vera, (2) è vera e (3) è vera F (1) è vera, (2) è falsa e (3) è vera
Compito n.26 Cognome: Nome:
n.1 n.2 n.3 n.4 n.5 n.6 n.7 n.8 n.9 n.10 n.11 n.12 n.13 n.14 n.15 n.16 A B B B B B B B B B B B B<
non scrivere sotto questa linea Totale:

Compito n.27 di Analisi Matematica 1, ing. Ambiente & Territorio, Energetica Meccanica, 02-12-05

Quesito n. 1 La funzione $f(x) = \begin{cases} -x^2 e^{-x^2} & x \le 0 \\ \left| \frac{1}{x} + 8x - 6 \right| & x > 0 \end{cases}$ ha

A almeno cinque punti di estremo, un asintoto verticale, un asintoto orizzontale ed uno obliquo estremo, un asintoto verticale, un asintoto orizzontale e nessun asintoto obliquo 🖸 non più di quattro punti di estremo, un asintoto verticale, un asintoto orizzontale ed uno obliquo D non più di quattro punti di estremo, un asintoto verticale, nessun asintoto orizzontale ed uno obliquo E esattamente tre tre punti di estremo, un asintoto verticale, un asintoto orizzontale ed uno obliquo 🖺 non più di tre punti di estremo, nessun asintoto verticale, un asintoto orizzontale,nessun asintoto obliquo

Quesito n. 2 Il valore minimo di a per cui la funzione $f(x) = (2)^{-2x} + (\frac{1}{2})^x + x \ln 2$ è crescente se e solo se $x \in (a, +\infty)$ è

monotona è invertibile. Si dica quale delle seguenti affermazioni è vera

A (1) è vera, (2) è vera e (3) è vera B (1) è falsa, (2) è vera e (3) è vera C (1) è falsa, (2) è falsa e (3) è falsa D (1) è vera, (2) è vera e (3) è falsa $\stackrel{\textstyle \longleftarrow}{\text{E}}$ (1) è falsa e (3) è vera $\stackrel{\textstyle \longleftarrow}{\text{E}}$ (1) è vera, (2) è falsa e (3) è vera $\stackrel{\textstyle \longleftarrow}{\text{Quesito n. 6}}$ La funzione $\sqrt{\frac{|x^2(x-1)|}{|x+1|}}$ ha

A in 1 la funzione è derivabile e in 0 una cuspide B in 1 una cuspide e in 0 un punto angoloso C in 1 un punto angoloso e in 0 la funzione è derivabile D in 1 un punto angoloso e in 0 un punto angoloso E in 1 una cuspide e in 0 una cuspide E in 1 una cuspide e in 0 la funzione è derivabile

Quesito n. 7 Data una funzione $f:[a,b] \to \mathbf{R}$ si consideri: (1) se f è continua allora esiste $x_0 \in [a,b]$ tale che $f(x_0) = \frac{1}{2}(f(a) + f(b))$ (2) se f è invertibile è monotona (3) se f è derivabile è monotona. Si dica quale delle seguenti affermazioni è vera

A (1) è vera, (2) è falsa e (3) è vera (1) è vera, (2) è falsa e (3) è falsa (2) è falsa e (3) è vera (1) è falsa (2) è falsa e (3) è vera vera, (2) è vera e (3) è vera (1) è vera, (2) è vera e (3) è falsa (1) è falsa, (2) è vera e (3) è vera

Quesito n. 8 (1) sia $f:[a,b] \to \mathbf{R}$ una funzione derivabile tale che $x_o \in [a,b]$ è un punto di massimo. Allora esiste un intorno di x_o tale che $f'(x_o)(x-x_o) \leq 0$ per ogni x appartenente all'intorno (2) sia $f:[a,b] \to \mathbf{R}$ una funzione derivabile tale che $x_o \in (a,b)$ è un punto di massimo. Allora $\exists \ \delta > 0: \ x \in (x_o - \delta, x_o + \delta) \Rightarrow f'(x_o)(x-x_o) < 0$ (3) sia $f:[0,1] \to \mathbf{R}$ una funzione derivabile. Allora f(x) - f(0) - f'(0)x = o(x) per $x \to 0^+$ (si assume che in x_o la funzione ha un minimo se esiste un intorno $(x_o - \delta, x_o + \delta)$ tale che $f(x) \ge f(x_o)$ per $x \in (x_o - \delta, x_o + \delta)$ e viceversa per il massimo)) (In tutti e tre i casi con f si intende una qualsiasi funzione avente le caratteristiche date). Allora

A (1) è vera, (2) è vera e (3) è falsa B (1) è falsa, (2) è vera e (3) è falsa C (1) è falsa, (2) è falsa e (3) è vera D (1) è vera, (2) è vera e (3) è vera E (1) è falsa, (2) è vera e (3) è vera F (1) è vera, (2) è falsa e (3) è vera

Quesito n. 9 Si considerino le seguenti tre affermazioni e si dica quale delle A-G è vera. (1) È data una funzione $f: \mathbf{R} \to \mathbf{R}$ che in $x = x_o$ ha un massimo. Allora la funzione è derivabile in $x = x_o$ e la derivata vale zero. (2) È data una funzione $g: \mathbf{R} \to \mathbf{R}$ derivabile che in x_o ha un flesso con derivata prima nulla. Allora $g''(x_o)$ esiste e vale zero (3) È data una funzione $f: \mathbf{R} \to \mathbf{R}$ convessa. Allora f' esiste ed è crescente

A (1) è falsa, (2) è falsa e (3) è vera B (1) è falsa, (2) è falsa e (3) è falsa C (1) è vera, (2) è vera e (3) è falsa D (1) è vera, (2) è falsa e (3) è vera e (3) è vera

Quesito n. 10 Sia data la funzione $f(x) = \left(x^{x^2}\right)^x$. Allora $\frac{f'(x)}{x^2 f(x)}$ è uguale a:

 $oxed{A}$ G può essere illimitato $oxed{B}$ G ammette estremo inferiore ma non superiore $oxed{C}$ G ammette minimo ma non massimo ammette massimo ma non minimo E G ammette massimo e minimo F G non ammette estremo superiore nè inferiore

Quesito n. 14 Date le funzioni f , g e h definite da $f(x) = \sqrt{e^{x^2} + x^x}$, $g(x) = (2x)^x$ e $h(x) = x^{2x}$. Allora per $x \to +\infty$ si ha:
$\underline{\mathbf{e}}\ g(x) = o(f(x)) \underline{\mathbf{E}}\ f(x) = o(h(x))\ \mathbf{e}\ h(x) = o(g(x)) \underline{\mathbf{F}}\ h(x) = o(f(x))\ \mathbf{e}\ f(x) = o(g(x))$
Quesito n. 15 Il limite $\lim_{x\to 0} \frac{\ln(1+2x)(1-\sin x)-2x}{\sin^2 x+\sin x^2}$ è uguale a:
A non esiste $\overline{\mathbb{B}}_{-2}$ $\overline{\mathbb{C}}_{1}$ $\overline{\mathbb{D}}_{+\infty}$ $\overline{\mathbb{E}}_{2}$ $\overline{\mathbb{F}}_{\frac{2}{3}}$
Quesito n. 16 Si calcoli il seguente limite $\lim_{x \to +\infty} \frac{\sin^2 x - x \sin x}{(1 - \cos x)^2}$
$\boxed{\mathbf{A}}_{+\infty}$ $\boxed{\mathbf{B}}_{-1}$ $\boxed{\mathbf{C}}_{-\frac{1}{3}}$ $\boxed{\mathbf{D}}_{0}$ $\boxed{\mathbf{E}}_{-\frac{2}{3}}$ $\boxed{\mathbf{F}}_{-\frac{3}{2}}$
Compito n.27 Cognome:
n.1 n.2 n.3 n.4 n.5 n.6 n.7 n.8 n.9 n.10 n.11 n.12 n.13 n.14 n.15 n.16 A<
non scrivere sotto questa linea Totale:

Compito n.28 di Analisi Matematica 1, ing. Ambiente Territorio, Energetica Meccanica, 02-12-05 Quesito n. 1 Data una funzione $f: [0,1] \cup [2,3] \to \mathbf{R}$ si consideri: (1) se f è continua allora esiste x_0 appartenente al dominio della funzione per cui $f(x_0) = \frac{1}{2}(f(3) + f(0))$ (2) se $f'(x) \ge 0$ allora la funzione è crescente (3) se f è invertibile e continua è monotona. Si dica quale delle seguenti affermazioni è vera A (1) è falsa, (2) è vera e (3) è vera B (1) è vera, (2) è vera e (3) è vera C (1) è falsa, (2) è falsa e (3) è vera D (1) è Quesito n. 2 Sia data una funzione $f:[0,3] \to \mathbf{R}$ continua e strettamente crescente. Sia data inoltre la funzione $g:(1,2] \to \mathbf{R}$ tale che g(x)=f(x) per ogni $x\in (1,2]$. Sia $G=\{y=g(x):x\in (1,2]\}$ l'insieme dei valori assunti da g(x). Si dica quale delle seguenti

 $oxed{A}$ G ammette massimo ma non minimo $oxed{B}$ G ammette estremo inferiore ma non superiore $oxed{C}$ G ammette minimo $oxed{D}$ G non

Quesito n. 3 Date le funzioni f, g e h definite da $f(x) = 2^{(x^x)}$, $g(x) = x^{(2^x)}$ e $h(x) = (2^x)^x$. Allora per $x \to +\infty$ si ha:

Quesito n. 4 Si calcoli il seguente limite $\lim_{x\to 0} \frac{x^2\cos^2 x - e^{x^2} + 1}{x^2\sin^2 x}$

 $A + \infty$ $B \frac{1}{2}$ $C - \frac{3}{2}$ $D \frac{-1}{4}$ $E - \frac{1}{2}$ F 0

Quesito n. 5 Si ordinino secondo l'infinitesimo crescente per $x \to 0^+$ le seguenti funzioni $f_1(x) = xe^{-1/x}$, $f_2(x) = e^{-1/x^2}$, $f_3(x) = x^{1/x}$, (l'ordinamento va eseguito nel modo seguente: g < f se $\lim_{x \to 0^+} \frac{f}{g} = 0$ ossia f = o(g))

tutti e tre i casi con f si intende una qualsiasi funzione avente le caratteristiche date). Allora

A (1) è vera, (2) è falsa e (3) è vera (1) è vera, (2) è vera e (3) è vera (1) è falsa, (2) è falsa e (3) è vera (1) è

Quesito n. 7 Si considerino le seguenti tre affermazioni e si dica quale delle A-G è vera. (1) È data una funzione $f:[a,b]\to \mathbf{R}$ continua in [a,b] e derivabile in (a,b) tale che $\lim_{x\to a^+} f'(x) = +\infty$. Allora $f'(a^+)$ non esiste in \mathbf{R} . (2) È data una funzione $f:[a,b]\to\mathbf{R}$ continua in [a,b] e derivabile in (a,b) tale che $\lim_{x\to a^+} f'(x)$ non esiste. Allora $f'(a^+)$ non esiste in \mathbf{R} . (3) È data una funzione $h: \mathbf{R} \to \mathbf{R}$ derivabile tale che h'(x) è illimitata inferiormente. Allora si ha $\lim_{x \to +\infty} h(x) = -\infty$

A (1) è falsa, (2) è vera e (3) è vera (3) è vera (1) è falsa, (2) è falsa (2) è falsa (2) è falsa (2) è falsa (2) è vera (3) è falsa (2) è falsa (3) è falsa (4) è falsa, (5) è falsa (5) è falsa (6) è falsa (7) è falsa (8) è falsa (8)

 $\frac{\text{vera, (2) è falsa e (3) è vera}}{\text{Quesito n. 8 La funzione } f(x) = \begin{cases} |\cos x| & -\pi \leq x \leq 0 \\ |-x^2 + x^3| & 0 < x \leq 2 \end{cases}}{\text{ha}}$

A esattamente due punti di estremo B esattamente un punto di estremo cinque punti di estremo cinque punti di estremo con esattamente cinque punti di estremo con esattamente cinque punti di estremo con esattamente cinque punti di estremo con estre mente sei punti di estremo E esattamente tre punti di estremo F esattamente quattro punti di estremo

Quesito n. 9 Sia $f(x) = \ln(2 + 14\sin x + 4\cos x)$. Allora f'(0) è eguale a

Quesito n. 10 Il valore minimo di a per cui la funzione $f(x) = (2)^{-2x+2} + 2(\frac{1}{2})^x + x \ln 2$ è crescente se e solo se $x \in (a, +\infty)$ è

(3) se f è derivabile è monotona. Si dica quale delle seguenti affermazioni è vera

A (1) è vera, (2) è vera e (3) è falsa (1) è falsa, (2) è vera e (3) è vera (2) è falsa e (3) è vera (1) è vera, (2) è falsa e (3) è vera vera, (2) è vera e (3) è vera E nessuna delle altre risposte è esatta E (1) è falsa, (2) è vera e (3) è falsa

Quesito n. 14 Il limite $\lim_{x\to 0} \frac{\ln(1-2x)(1+\sin 2x)-2x}{(e^x-1)^2}$ è uguale a:

Quesito n. 15 Sia data la funzione $f(x) = \left(x^{x^3}\right)^x$. Allora $\frac{f'(x)}{x^3 f(x)}$ è uguale a:
Quesito n. 16 La funzione $\sqrt{ \cos x(1-\cos x) }$ ha
$\boxed{\mathbf{A} = \frac{\pi}{2}}$ un punto angoloso in 0 e la funzione è derivabile $\boxed{\mathbf{B}}$ in $\frac{-\pi}{2}$ la funzione è derivabile e 0 è un punto angoloso $\boxed{\mathbf{C}}$ in $\frac{-\pi}{2}$ la funzione è derivabile e 0 è un punto di cuspide $\boxed{\mathbf{D} = \frac{\pi}{2}}$ un punto di cuspide e 0 un punto di cuspide $\boxed{\mathbf{E} = \frac{\pi}{2}}$ un punto angoloso e 0 un punto angoloso $\boxed{\mathbf{F} = \frac{\pi}{2}}$ una cuspide e 0 un punto angoloso
Compito n.28 Cognome: Nome: Nome:
n.1 n.2 n.3 n.4 n.5 n.6 n.7 n.8 n.9 n.10 n.11 n.12 n.13 n.14 n.15 n.16 A<
non scrivere sotto questa linea Totale:

Analisi Matematica 1, ing. Ambiente & Territorio, Energetica, Meccanica, Secondo esonero 02-12-05
Compito n.29 di Analisi Matematica 1, ing. Ambiente& Territorio, Energetica Meccanica, 02-12-05
Quesito n. 1 Il limite $\lim_{x\to 0} \frac{xe^x - \ln(1+x)}{\sin^2 x + (1-\cos x)}$ è uguale a:
$A_{\frac{1}{2}}$ B_1 $C_{+\infty}$ D_0 $E_{\text{non esiste}}$ $F_{-\frac{1}{3}}$
Quesito n. 2 Data una funzione $f:[0,1] \cup [2,3] \to \mathbf{R}$ si consideri: (1) se f è continua allora esiste $x_0 \in [0,1]$ tale che $f(x_0) = \frac{1}{2}(f(0) + f(1))$ (2) se f è continua allora esiste x_0 nel dominio tale che $f(x_0) = \frac{1}{2}(f(0) + f(3))$ (3) se f è strettamente monotona è invertibile. Si dica quale delle seguenti affermazioni è vera
A (1) è vera, (2) è vera e (3) è falsa B (1) è falsa, (2) è vera e (3) è vera C (1) è vera, (2) è vera e (3) è vera falsa, (2) è falsa e (3) è vera E (1) è falsa, (2) è falsa e (3) è vera E (1) è falsa, (2) è falsa e (3) è vera
Quesito n. 3 La funzione $\arctan(x x-1)^{1/3}$ ha
A in 0 una cuspide e in 1 un flesso a tangente verticale B in 1 una cuspide e in 0 una cuspide C in 0 un punto in cui la funzione è derivabile D in 1 una cuspide e in 0 un flesso a tangente verticale E in 1 un punto angoloso e in 0 un punto angoloso E in 1 un flesso a tangente verticale e in 0 un punto angoloso
Quesito n. 4 La funzione $f(x) = \begin{cases} \sin x & -2\pi \le x \le 0 \\ xe^{-x} & 0 < x \end{cases}$ ha
A esattamente sei punti di estremo, un asintoto orizzontale asintoto orizzontale C esattamente sei punti di estremo, nessun asintoto verticale, nessun asintoto verticale, nessun asintoto orizzontale C esattamente sei punti di estremo, nessun asintoto verticale, nessun asintoto orizzontale, un asintoto obliquo E esattamente sei punti di estremo, un asintoto orizzontale un asintoto obliquo E esattamente cinque punti di estremo, un asintoto verticale, un asintoto orizzontale
Quesito n. 5 Date le funzioni f , g e h definite da $f(x) = (\sqrt{x})^{\ln x}$, $g(x) = (\ln x)^{\sqrt{x}}$ e $h(x) = x^{\sqrt{\ln x}}$. Allora per $x \to +\infty$ si ha
Quesito n. 6 Sia data una funzione $f:[0,3] \to \mathbf{R}$ continua e strettamente decrescente. Sia data inoltre la funzione $g:(1,2] \to \mathbf{R}$ talche $g(x) = f(x)$ per ogni $x \in (1,2]$. Sia $G = \{y = g(x) : x \in (1,2]\}$ l'insieme dei valori assunti da $g(x)$. Si dica quale delle seguent affermazioni è vera
A G ammette minimo ma non massimo superiore D G può essere illimitato E G ammette massimo e minimo F G non ammette estremo superiore nè inferiore
Quesito n. 7 (1) sia $f:[0,1] \to \mathbf{R}$ una funzione derivabile tale che $f'(1/2) = 0$. Allora $\frac{f(x) - f(\frac{1}{2})}{\sqrt{x - \frac{1}{2}}} = o(1)$ per $x \to \frac{1}{2}^+$ (2) sia
$f:[0,1]\to \mathbf{R}$ una funzione derivabile tale che $x=0$ è un minimo. Allora $f'(0^+)=0$ (la derivata destra in $x=0$ vale zero). (3 sia $f:[0,1]\to \mathbf{R}$ una funzione derivabile tale che $f'(x)>0$ per ogni x . Ne segue che $f(x)$ è invertibile (In tutti e tre i casi con f s intende una qualsiasi funzione avente le caratteristiche date). Allora
A (1) è falsa, (2) è falsa e (3) è vera B (1) è vera, (2) è vera e (3) è vera C (1) è vera, (2) è falsa e (3) è vera falsa, (2) è vera e (3) è falsa E (1) è falsa, (2) è vera e (3) è vera E (1) è vera, (2) è vera e (3) è falsa
Quesito n. 8 Sia data la funzione $f(x) = ((2x)^x)^x$. Allora $\frac{f'(x)}{xf(x)}$ è uguale a:
Quesito n. 9 Data una funzione $f:[a,b] \to \mathbf{R}$ si consideri: (1) se f è continua è limitata (2) se f è continua è monotona (3) se f è monotona è continua. Si dica quale delle seguenti affermazioni è vera
A (1) è falsa, (2) è falsa e (3) è vera B (1) è falsa, (2) è vera e (3) è vera C (1) è vera, (2) è falsa e (3) è vera vera, (2) è falsa e (3) è vera (2) è vera e (3) è falsa E (1) è vera, (2) è vera e (3) è falsa E (1) è vera, (2) è vera e (3) è vera
vera, (2) e raisa e (3) e raisa $raisa$ $rais$
$A_1 B_{\frac{1}{2}} C_{\frac{3}{2}} D_{\frac{3}{2}} E_{\frac{3}{2}} F_{\frac{1}{2}}$
$\frac{3}{\text{Quesito n. 11}}$ Sia $f(x) = e^{2x} - e^{-2x} + \alpha x + \beta x^3$. Essa ha ordine di infinitesimo massimo per $x \to 0$ se e solo se
Quesito n. 12 Si ordinino secondo l'infinito crescente per $x \to +\infty$ le seguenti funzioni $f_1(x) = e^{x^{3/2}/\ln^2 x}$, $f_2(x) = e^{x \ln(\ln x)}$ $f_3(x) = e^{\sqrt{x} \ln^4 x}$, (l'ordinamento va eseguito nel modo seguente: $g < f$ se $\lim_{x \to +\infty} \frac{f}{g} = +\infty$)
Quesito n. 13 Il valore minimo di a per cui la funzione $f(x) = (2)^{-2x} + (\frac{1}{2})^x + x \ln 2$ è crescente se e solo se $x \in (a, +\infty)$ è

Quesito n. 14 Si calcoli il seguente limite $\lim_{x\to 0} \frac{\tan^2 x - x \tan x}{(1-\cos x)^2}$

 $f A_0 \quad f B_{3 \over 3} \quad f C_1 \quad f D_{4 \over 3} \quad f E_{1 \over 3} \quad f F_{1 \over 2}$

Quesito n. 15 Sia $f(x) = \arctan \frac{2x+1}{x+1}$. Allora $f'(x)$ è uguale a:
Quesito n. 16 Si considerino le seguenti tre affermazioni e si dica quale delle A-G è vera. (1) È data una funzione $f: \mathbf{R} \to \mathbf{R}$ derivabile monotona strettamente crescente tale che $\lim_{x \to +\infty} f(x) = +\infty$. Può aversi $\lim_{x \to +\infty} f'(x) = 0$. (2) È data una funzione $f: \mathbf{R} \to \mathbf{R}$ derivabile monotona strettamente crescente tale che $\lim_{x \to +\infty} f(x) = +\infty$. Può aversi $f'(x) = 0$ su di un insiem illimitato (3) È data una funzione $h: [a, b] \to \mathbf{R}$ derivabile per cui la derivata prima è una funzione strettamente crescente. Allore h ha la concavità rivolta verso l'alto A (1) è falsa, (2) è vera e (3) è falsa A (1) è falsa, (2) è vera e (3) è falsa A (1) è falsa, (2) è vera e (3) è falsa A (1) è vera, (2) è vera e (3) è vera
Compito n.29 Cognome: Nome:
N.1 n.2 n.3 n.4 n.5 n.6 n.7 n.8 n.9 n.10 n.11 n.12 n.13 n.14 n.15 n.16 A B B B B B B B B B B B B B B B B<
non scrivere sotto questa linea Totale:

Compito n.30 di Analisi Matematica 1, ing. Ambiente & Territorio, Energetica Meccanica, 02-12-05

Quesito n. 1 Si ordinino secondo l'infinito crescente per $x \to +\infty$ le seguenti funzioni $f_1(x) = x^x$, $f_2(x) = e^{x\sqrt{\ln x}}$, $f_3(x) = x^{\sqrt{x}+2x}$ (l'ordinamento va eseguito nel modo seguente: g < f se $\lim_{x \to +\infty} \frac{f}{g} = +\infty$) $\frac{ \boxed{ \textbf{A} \ f_1 < f_3 < f_2 } \quad \boxed{ \textbf{B} \ f_1 < f_2 < f_3 } \quad \boxed{ \textbf{C} \ f_2 < f_1 < f_3 } \quad \boxed{ \textbf{D} \ f_3 < f_2 < f_1 } \quad \boxed{ \textbf{E} \ f_3 < f_1 < f_2 } \quad \boxed{ \textbf{F} \ f_2 < f_3 < f_1 }$ $\boxed{ \textbf{Quesito n. 2} \ \text{Si calcoli il seguente limite } \lim_{x \to 0} \frac{e^{-x^2} \cos x - e^{x^2} + \frac{5}{2}x^2}{x \sin^3 x} }$ $A = \frac{1}{2}$ $B = \frac{1}{2}$ $C = \frac{7}{5}$ $D = \frac{2}{7}$ $E = \frac{13}{24}$ $F = \frac{2}{3}$ Quesito n. 3 Data una funzione $f:[0,1)\cup[2,3]\to\mathbf{R}$ sia $g(x):[2,3]\to\mathbf{R}$ la f ristretta all'intervallo [2,3] ($g(x)=f|_{[2,3]}$). Si consideri: (1) se f è continua allora esiste (finito o infinito) $\lim_{x\to 1^-} f(x)$ (2) se f è continua ed invertibile allora g(x) è monotona (3) se f è strettamente monotona è invertibile. Si dica quale delle seguenti affermazioni è vera A (1) è falsa, (2) è vera e (3) è vera B (1) è vera, (2) è falsa e (3) è vera C (1) è falsa, (2) è falsa e (3) è vera D (1) è Quesito n. 4 Sia data una funzione $f:[0,3] \to \mathbf{R}$ continua e strettamente crescente. Sia data inoltre la funzione $g:(1,2) \to \mathbf{R}$ tale che g(x)=f(x) per ogni $x\in(1,2)$. Sia $G=\{y=g(x):x\in(1,2)\}$ l'insieme dei valori assunti da g(x). Si dica quale delle seguenti A G può essere illimitato B G ammette estremo superiore ma non inferiore C G ammette massimo D G ammette estremo **Quesito n. 5** Sia data la funzione $f(x) = (x^x)^{3x}$. Allora $\frac{f'(x)}{3x f(x)}$ è uguale a: $\frac{\boxed{\textbf{A} \; 3 \ln \left(2x\right) + 1 \quad \boxed{\textbf{B} \; 2 \ln x + 1} \quad \boxed{\textbf{C} \; 2 \ln \left(2x\right) + 1 \quad \boxed{\textbf{D}} \; 4 \ln x + 1 \quad \boxed{\textbf{E} \; 3 \ln x + 1} \quad \boxed{\textbf{F} \; 2 \ln \left(3x\right) + 1} }{ \boxed{\textbf{Quesito n. 6} \; \text{La funzione} \; f(x) = } \left\{ \begin{array}{c} -x^2 e^{-x^2} \quad x \leq 0 \\ \left|\frac{1}{x} + 8x - 6\right| \quad x > 0 \end{array} \right. \quad \text{ha}$ Al non più di quattro punti di estremo, un asintoto verticale, un asintoto orizzontale ed uno obliquo Besattamente tre tre punti di estremo, un asintoto verticale, un asintoto orizzontale ed uno obliquo C almeno cinque punti di estremo, un asintoto verticale, un asintoto orizzontale ed uno obliquo D non più di tre punti di estremo, nessun asintoto verticale, un asintoto orizzontale,nessun asintoto obliquo 🗵 non più di quattro punti di estremo, un asintoto verticale, nessun asintoto orizzontale ed uno obliquo 🕒 non più di cinque punti di estremo, un asintoto verticale, un asintoto orizzontale e nessun asintoto obliquo Quesito n. 7 Si considerino le seguenti tre affermazioni e si dica quale delle A-G è vera. (1) È data una funzione $f:[a,b)\to \mathbf{R}$ derivabile tale che $\lim_{x\to b^-} f(x) = +\infty$. Allora $\lim_{x\to b^-} f'(x) = +\infty$. (2) È data una funzione $g: \mathbf{R} \to \mathbf{R}$ tale che $\lim_{x\to +\infty} g(x) = +\infty$. (3) È data una funzione $f:[a,b)\to \mathbf{R}$ tale che |f'(x)| è 0. Allora non è detto che sia definitivamente positiva oppure negativa illimitata. Allora f(x) è illimitata. (1) è vera, (2) è vera e (3) è falsa (1) è falsa, (2) è vera e (3) è falsa (1) è vera, (2) è vera e (3) è vera (3) è vera (1) è vera, (2) è vera e (3) è vera (3) è vera falsa, (2) è vera e (3) è vera E (1) è falsa, (2) è falsa e (3) è vera F (1) è vera, (2) è falsa e (3) è vera Quesito n. 8 La funzione $\sqrt{|\sin x(1-\sin x)|}$ ha $\underline{\mathbf{A}}$ in 0 un punto angoloso e in $\frac{\pi}{2}$ un punto angoloso $\underline{\mathbf{B}}$ in 0 un punto angoloso e in $\frac{\pi}{2}$ un punto in cui è derivabile $\underline{\mathbf{C}}$ in 0 una cuspide e in $\frac{\pi}{2}$ una cuspide $\boxed{\mathbb{D}}$ in 0 una cuspide e in $\frac{\pi}{2}$ un punto angoloso $\boxed{\mathbb{E}}$ in 0 un punto in cui la funzione è derivabile e in $\frac{\pi}{2}$ una cuspide \mathbb{F} in $\frac{\pi}{2}$ un punto in cui la funzione è derivabile **Quesito n. 9** Sia $f(x) = \arctan \frac{2x-1}{x+1}$. Allora f'(x) è uguale a: ė̃ vera A (1) è vera, (2) è vera e (3) è vera B (1) è falsa, (2) è vera e (3) è vera C (1) è vera, (2) è falsa e (3) è vera D (1) è falsa, (2) è falsa e (3) è falsa E (1) è vera, (2) è falsa e (3) è falsa E (1) è vera, (2) è falsa e (3) è falsa Quesito n. 13 Date le funzioni f, g e h definite da $f(x) = \ln(1+x^x)$, $g(x) = \ln(1+x^2)$ e $h(x) = \sqrt{\ln(1+e^{x^3})}$. Allora per

Quesito n. 14 Il limite $\lim_{x \to 0} \frac{e^{2x} \ln(1+x) - \sin x}{\sin^2 x + \ln^2(1+x)}$ è uguale a:
A non esiste B $\frac{1}{2}$ C 2 D $\frac{3}{4}$ E $-\frac{2}{3}$ F $+\infty$
Quesito n. 15 (1) sia $f:[0,1] \to \mathbf{R}$ una funzione derivabile tale che in $x_o \in [0,1]$ la funzione ha un minimo. Allora $f'(x_o) = 0$ (2) sia $f:[0,1] \to \mathbf{R}$ una funzione tale che in $x_o \in [0,1]$ ha un minimo. Allora f è derivabile in x_o (3) sia $f:[0,1] \to \mathbf{R}$ una funzione derivabile tale che $f'(x) > 0$ per ogni x . Ne segue che $f(x)$ è invertibile (In tutti e tre i casi con f si intende una qualsias funzione avente le caratteristiche date). Allora
A (1) è falsa, (2) è vera e (3) è falsa B (1) è vera, (2) è vera e (3) è vera C (1) è falsa, (2) è vera e (3) è vera E (1) è falsa, (2) è falsa e (3) è vera
Quesito n. 16 Sia $f(x) = \ln(3 + 5\sin x + 4\cos x)$. Allora $f'(0)$ è eguale a
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Compito n.30 Cognome:
n.1 n.2 n.3 n.4 n.5 n.6 n.7 n.8 n.9 n.10 n.11 n.12 n.13 n.14 n.15 n.16 A<
non scrivere sotto questa linea Totale: